PhysLean/HepLean/SpaceTime/LorentzTensor/EinsteinNotation/IndexNotation.lean

127 lines
4.7 KiB
Text
Raw Normal View History

2024-08-16 15:56:18 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.IndexNotation.TensorIndex
import HepLean.SpaceTime.LorentzTensor.IndexNotation.IndexString
import HepLean.SpaceTime.LorentzTensor.EinsteinNotation.Basic
/-!
# Index notation for Einstein tensors
-/
instance : IndexNotation einsteinTensorColor.Color where
charList := {'ᵢ'}
notaEquiv :=
⟨fun _ => ⟨'ᵢ', Finset.mem_singleton.mpr rfl⟩,
fun _ => Unit.unit,
fun _ => rfl,
by
intro c
have hc2 := c.2
simp only [↓Char.isValue, Finset.mem_singleton] at hc2
exact SetCoe.ext (id (Eq.symm hc2))⟩
namespace einsteinTensor
open einsteinTensorColor
open IndexNotation IndexString
open TensorStructure TensorIndex
variable {R : Type} [CommSemiring R] {n m : }
instance : IndexNotation (einsteinTensor R n).Color := instIndexNotationColorEinsteinTensorColor
instance : DecidableEq (einsteinTensor R n).Color := instDecidableEqColorEinsteinTensorColor
@[simp]
lemma indexNotation_eq_color : @einsteinTensor.instIndexNotationColor R _ n =
instIndexNotationColorEinsteinTensorColor := by
rfl
@[simp]
2024-08-19 06:43:48 -04:00
lemma decidableEq_eq_color : @einsteinTensor.instDecidableEqColor R _ n =
2024-08-16 15:56:18 -04:00
instDecidableEqColorEinsteinTensorColor := by
rfl
@[simp]
lemma einsteinTensor_color : (einsteinTensor R n).Color = einsteinTensorColor.Color := by
rfl
@[simp]
lemma toTensorColor_eq : (einsteinTensor R n).toTensorColor = einsteinTensorColor := by
rfl
/-- The construction of a tensor index from a tensor and a string satisfying conditions
which can be automatically checked. This is a modified version of
`TensorStructure.TensorIndex.mkDualMap` specific to real Lorentz tensors. -/
2024-08-16 16:15:39 -04:00
noncomputable def fromIndexStringColor {R : Type} [CommSemiring R]
{cn : Fin n → einsteinTensorColor.Color}
2024-08-16 15:56:18 -04:00
(T : (einsteinTensor R m).Tensor cn) (s : String)
(hs : listCharIsIndexString einsteinTensorColor.Color s.toList = true)
(hn : n = (toIndexList' s hs).length)
(hD : (toIndexList' s hs).withDual = (toIndexList' s hs).withUniqueDual)
(hC : IndexList.ColorCond.bool (toIndexList' s hs))
(hd : TensorColor.ColorMap.DualMap.boolFin'
(toIndexList' s hs).colorMap (cn ∘ Fin.cast hn.symm)) :
(einsteinTensor R m).TensorIndex :=
TensorStructure.TensorIndex.mkDualMap T ⟨(toIndexList' s hs), hD,
IndexList.ColorCond.iff_bool.mpr hC⟩ hn
(TensorColor.ColorMap.DualMap.boolFin'_DualMap hd)
@[simp]
2024-08-16 16:15:39 -04:00
lemma fromIndexStringColor_indexList {R : Type} [CommSemiring R]
{cn : Fin n → einsteinTensorColor.Color}
2024-08-16 15:56:18 -04:00
(T : (einsteinTensor R m).Tensor cn) (s : String)
(hs : listCharIsIndexString einsteinTensorColor.Color s.toList = true)
(hn : n = (toIndexList' s hs).length)
(hD : (toIndexList' s hs).withDual = (toIndexList' s hs).withUniqueDual)
(hC : IndexList.ColorCond.bool (toIndexList' s hs))
(hd : TensorColor.ColorMap.DualMap.boolFin'
(toIndexList' s hs).colorMap (cn ∘ Fin.cast hn.symm)) :
(fromIndexStringColor T s hs hn hD hC hd).toIndexList = toIndexList' s hs := by
rfl
/-- A tactic used to prove `boolFin` for real Lornetz tensors. -/
macro "dualMapTactic" : tactic =>
`(tactic| {
simp only [toTensorColor_eq]
decide })
/-- Notation for the construction of a tensor index from a tensor and a string.
Conditions are checked automatically. -/
notation:20 T "|" S:21 => fromIndexStringColor T S
(by decide)
(by decide) (by decide)
(by decide)
(by dualMapTactic)
/-- A tactics used to prove `colorPropBool` for real Lorentz tensors. -/
macro "prodTactic" : tactic =>
`(tactic| {
apply (ColorIndexList.AppendCond.iff_bool _ _).mpr
change @ColorIndexList.AppendCond.bool einsteinTensorColor
instIndexNotationColorEinsteinTensorColor instDecidableEqColorEinsteinTensorColor _ _
simp only [prod_toIndexList, indexNotation_eq_color, fromIndexStringColor, mkDualMap,
toTensorColor_eq, decidableEq_eq_color]
decide})
lemma mem_fin_list (n : ) (i : Fin n) : i ∈ Fin.list n := by
have h1' : (Fin.list n)[i] = i := Fin.getElem_list _ _
exact h1' ▸ List.getElem_mem _ _ _
instance (n : ) (i : Fin n) : Decidable (i ∈ Fin.list n) :=
isTrue (mem_fin_list n i)
/-- The product of Real Lorentz tensors. Conditions on indices are checked automatically. -/
notation:10 T "⊗ᵀ" S:11 => TensorIndex.prod T S (by prodTactic)
/-- An example showing the allowed constructions. -/
example (T : (einsteinTensor R n).Tensor ![Unit.unit, Unit.unit]) : True := by
let _ := T|"ᵢ₂ᵢ₃"
let _ := T|"ᵢ₁ᵢ₂" ⊗ᵀ T|"ᵢ₂ᵢ₁"
let _ := T|"ᵢ₁ᵢ₂" ⊗ᵀ T|"ᵢ₂ᵢ₁" ⊗ᵀ T|"ᵢ₃ᵢ₄"
exact trivial
end einsteinTensor