PhysLean/HepLean/Mathematics/List/InsertIdx.lean

191 lines
7.2 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Mathematics.List
/-!
# List lemmas
-/
namespace HepLean.List
open Fin
open HepLean
variable {n : Nat}
lemma insertIdx_map {I J : Type} (f : I → J) : (i : ) → (r : List I) → (r0 : I) →
(List.insertIdx i r0 r).map f = List.insertIdx i (f r0) (r.map f)
| 0, [], r0 => by simp
| n+1, [], r0 => by simp
| 0, a::as, r0 => by simp
| n+1, a::as, r0 => by
simp only [List.insertIdx_succ_cons, List.map_cons, List.cons.injEq, true_and]
exact insertIdx_map f n as r0
lemma eraseIdx_sorted {I : Type} (le : I → I → Prop) :
(r : List I) → (n : ) →
List.Sorted le r → List.Sorted le (r.eraseIdx n)
| [], _, _ => by simp
| a::as, 0, h => by
simp only [List.eraseIdx]
simp only [List.sorted_cons] at h
exact h.2
| a::as, n+1, h => by
simp only [List.eraseIdx_cons_succ, List.sorted_cons]
simp only [List.sorted_cons] at h
refine And.intro ?_ (eraseIdx_sorted le as n h.2)
intro b hb
refine h.1 _ ?_
exact List.mem_of_mem_eraseIdx hb
lemma mem_eraseIdx_nodup {I : Type} (i : I) :
(l : List I) → (n : ) → (hn : n < l.length) → (h : List.Nodup l) →
i ∈ l.eraseIdx n ↔ i ∈ l ∧ i ≠ l[n]
| [], _, _, _ => by simp
| a1 :: as, 0, _, h => by
simp only [List.eraseIdx_zero, List.tail_cons, List.mem_cons, List.getElem_cons_zero, ne_eq]
by_cases hi : i = a1
· subst hi
simp only [List.nodup_cons] at h
simp [h]
· simp [hi]
| a1 :: as, n+1, hn, h => by
simp only [List.eraseIdx_cons_succ, List.mem_cons, List.getElem_cons_succ, ne_eq]
simp only [List.nodup_cons] at h
rw [mem_eraseIdx_nodup i as n (Nat.succ_lt_succ_iff.mp hn) h.2]
simp_all only [ne_eq]
obtain ⟨left, right⟩ := h
apply Iff.intro
· intro a
cases a with
| inl h =>
subst h
simp_all only [or_false, true_and]
apply Aesop.BuiltinRules.not_intro
intro a
simp_all only [List.getElem_mem, not_true_eq_false]
| inr h_1 => simp_all only [or_true, not_false_eq_true, and_self]
· intro a
simp_all only [not_false_eq_true, and_true]
lemma insertIdx_eq_take_drop {I : Type} (i : I) : (r : List I) → (n : Fin r.length.succ) →
List.insertIdx n i r = List.take n r ++ i :: r.drop n
| [], 0 => by simp
| a :: as, 0 => by
simp
| a :: as, ⟨n + 1, h⟩ => by
simp only [List.insertIdx_succ_cons, List.take_succ_cons, List.drop_succ_cons, List.cons_append,
List.cons.injEq, true_and]
exact insertIdx_eq_take_drop i as ⟨n, Nat.succ_lt_succ_iff.mp h⟩
@[simp]
lemma insertIdx_length_fin {I : Type} (i : I) :
(r : List I) → (n : Fin r.length.succ) →
(List.insertIdx n i r).length = r.length.succ
| [], 0 => by simp
| a :: as, 0 => by simp
| a :: as, ⟨n + 1, h⟩ => by
simp only [List.insertIdx_succ_cons, List.length_cons, Nat.succ_eq_add_one, add_left_inj]
exact insertIdx_length_fin i as ⟨n, Nat.succ_lt_succ_iff.mp h⟩
@[simp]
lemma insertIdx_getElem_fin {I : Type} (i : I) :
(r : List I) → (k : Fin r.length.succ) → (m : Fin r.length) →
(List.insertIdx k i r)[(k.succAbove m).val] = r[m.val]
| [], 0, m => by exact Fin.elim0 m
| a :: as, 0, m => by simp
| a :: as, ⟨n + 1, h⟩, ⟨0, h0⟩ => by
simp [Fin.succAbove, Fin.lt_def]
| a :: as, ⟨n + 1, h⟩, ⟨m+1, hm⟩ => by
simp only [List.insertIdx_succ_cons, List.length_cons, Nat.succ_eq_add_one,
List.getElem_cons_succ]
conv_rhs => rw [← insertIdx_getElem_fin i as ⟨n, Nat.succ_lt_succ_iff.mp h⟩
⟨m, Nat.lt_of_succ_lt_succ hm⟩]
simp only [Fin.succAbove, Fin.castSucc_mk, Fin.lt_def, add_lt_add_iff_right, Fin.succ_mk,
Nat.succ_eq_add_one]
split
· simp_all only [List.getElem_cons_succ]
· simp_all only [List.getElem_cons_succ]
lemma insertIdx_eraseIdx_fin {I : Type} :
(r : List I) → (k : Fin r.length) →
(List.eraseIdx r k).insertIdx k r[k] = r
| [], k => by exact Fin.elim0 k
| a :: as, ⟨0, h⟩ => by simp
| a :: as, ⟨n + 1, h⟩ => by
simp only [List.length_cons, Fin.getElem_fin, List.getElem_cons_succ, List.eraseIdx_cons_succ,
List.insertIdx_succ_cons, List.cons.injEq, true_and]
exact insertIdx_eraseIdx_fin as ⟨n, Nat.lt_of_succ_lt_succ h⟩
2025-01-28 16:56:20 +00:00
lemma insertIdx_length_fst_append {I : Type} (φ : I) : (φs φs' : List I) →
2025-01-29 16:06:28 +00:00
List.insertIdx φs.length φ (φs ++ φs') = (φs ++ φ :: φs')
2025-01-28 16:56:20 +00:00
| [], φs' => by simp
| φ' :: φs, φs' => by
2025-01-30 05:35:42 +00:00
simp only [List.length_cons, List.cons_append, List.insertIdx_succ_cons, List.cons.injEq,
true_and]
2025-01-28 16:56:20 +00:00
exact insertIdx_length_fst_append φ φs φs'
lemma get_eq_insertIdx_succAbove {I : Type} (i : I) (r : List I) (k : Fin r.length.succ) :
r.get = (List.insertIdx k i r).get ∘
(finCongr (insertIdx_length_fin i r k).symm) ∘ k.succAbove := by
funext i
simp
lemma take_insert_same {I : Type} (i : I) :
(n : ) → (r : List I) →
List.take n (List.insertIdx n i r) = List.take n r
| 0, _ => by simp
| _+1, [] => by simp
| n+1, a::as => by
simp only [List.insertIdx_succ_cons, List.take_succ_cons, List.cons.injEq, true_and]
exact take_insert_same i n as
lemma take_eraseIdx_same {I : Type} :
(n : ) → (r : List I) →
List.take n (List.eraseIdx r n) = List.take n r
| 0, _ => by simp
| _+1, [] => by simp
| n+1, a::as => by
simp only [List.eraseIdx_cons_succ, List.take_succ_cons, List.cons.injEq, true_and]
exact take_eraseIdx_same n as
lemma drop_eraseIdx_succ {I : Type} :
(n : ) → (r : List I) → (hn : n < r.length) →
r[n] :: List.drop n (List.eraseIdx r n) = List.drop n r
| 0, _, _=> by
simp only [List.eraseIdx_zero, List.drop_tail, zero_add, List.drop_one, List.drop_zero]
rw [@List.getElem_zero]
exact List.head_cons_tail _ _
| n+1, [], hn => by simp at hn
| n+1, a::as, hn => by
simp only [List.getElem_cons_succ, List.eraseIdx_cons_succ, List.drop_succ_cons]
refine drop_eraseIdx_succ n as _
lemma take_insert_gt {I : Type} (i : I) :
(n m : ) → (h : n < m) → (r : List I) →
List.take n (List.insertIdx m i r) = List.take n r
| 0, 0, _, _ => by simp
| 0, m + 1, _, _ => by simp
| n+1, m + 1, _, [] => by simp
| n+1, m + 1, h, a::as => by
simp only [List.insertIdx_succ_cons, List.take_succ_cons, List.cons.injEq, true_and]
refine take_insert_gt i n m (Nat.succ_lt_succ_iff.mp h) as
lemma take_insert_let {I : Type} (i : I) :
(n m : ) → (h : m ≤ n) → (r : List I) → (hm : m ≤ r.length) →
(List.take (n + 1) (List.insertIdx m i r)).Perm (i :: List.take n r)
| 0, 0, h, _, _ => by simp
| m + 1, 0, h, r, _ => by simp
| n + 1, m + 1, h, [], hm => by
simp at hm
| n + 1, m + 1, h, a::as, hm => by
simp only [List.insertIdx_succ_cons, List.take_succ_cons]
have hp : (i :: a :: List.take n as).Perm (a :: i :: List.take n as) := by
exact List.Perm.swap a i (List.take n as)
refine List.Perm.trans ?_ hp.symm
refine List.Perm.cons a ?_
exact take_insert_let i n m (Nat.le_of_succ_le_succ h) as (Nat.le_of_succ_le_succ hm)
end HepLean.List