PhysLean/HepLean/Lorentz/SL2C/Basic.lean

303 lines
13 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
2024-07-12 16:39:44 -04:00
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
2024-11-09 17:29:43 +00:00
import HepLean.Lorentz.Group.Basic
2024-11-09 17:37:12 +00:00
import HepLean.Lorentz.RealVector.Basic
import Mathlib.RepresentationTheory.Basic
2024-11-09 17:29:43 +00:00
import HepLean.Lorentz.Group.Restricted
2024-11-09 17:43:48 +00:00
import HepLean.Lorentz.PauliMatrices.SelfAdjoint
import HepLean.Meta.Informal
/-!
# The group SL(2, ) and it's relation to the Lorentz group
The aim of this file is to give the relationship between `SL(2, )` and the Lorentz group.
-/
2024-11-10 06:48:04 +00:00
namespace Lorentz
open Matrix
open MatrixGroups
open Complex
namespace SL2C
noncomputable section
2024-10-03 07:15:48 +00:00
/-!
## Some basic properties about SL(2, )
Possibly to be moved to mathlib at some point.
-/
lemma inverse_coe (M : SL(2, )) : M.1⁻¹ = (M⁻¹).1 := by
apply Matrix.inv_inj
2024-10-03 07:32:46 +00:00
simp only [SpecialLinearGroup.det_coe, isUnit_iff_ne_zero, ne_eq, one_ne_zero, not_false_eq_true,
nonsing_inv_nonsing_inv, SpecialLinearGroup.coe_inv]
2024-10-03 07:15:48 +00:00
have h1 : IsUnit M.1.det := by
simp
rw [Matrix.inv_adjugate M.1 h1]
· simp
· simp
2024-10-16 10:39:11 +00:00
lemma transpose_coe (M : SL(2, )) : M.1ᵀ = (M.transpose).1 := rfl
2024-06-15 17:08:08 -04:00
/-!
## Representation of SL(2, ) on spacetime
Through the correspondence between spacetime and self-adjoint matrices,
we can define a representation a representation of `SL(2, )` on spacetime.
-/
/-- Given an element `M ∈ SL(2, )` the linear map from `selfAdjoint (Matrix (Fin 2) (Fin 2) )` to
2024-07-19 17:00:32 -04:00
itself defined by `A ↦ M * A * Mᴴ`. -/
@[simps!]
def toSelfAdjointMap (M : SL(2, )) :
selfAdjoint (Matrix (Fin 2) (Fin 2) ) →ₗ[] selfAdjoint (Matrix (Fin 2) (Fin 2) ) where
toFun A := ⟨M.1 * A.1 * Matrix.conjTranspose M,
by
noncomm_ring [selfAdjoint.mem_iff, star_eq_conjTranspose,
conjTranspose_mul, conjTranspose_conjTranspose,
(star_eq_conjTranspose A.1).symm.trans $ selfAdjoint.mem_iff.mp A.2]⟩
map_add' A B := by
2024-10-03 13:50:18 +00:00
simp only [AddSubgroup.coe_add, AddMemClass.mk_add_mk, Subtype.mk.injEq]
noncomm_ring [AddSubmonoid.coe_add, AddSubgroup.coe_toAddSubmonoid, AddSubmonoid.mk_add_mk,
Subtype.mk.injEq]
map_smul' r A := by
noncomm_ring [selfAdjoint.val_smul, Algebra.mul_smul_comm, Algebra.smul_mul_assoc,
RingHom.id_apply]
lemma toSelfAdjointMap_apply_det (M : SL(2, )) (A : selfAdjoint (Matrix (Fin 2) (Fin 2) )) :
det ((toSelfAdjointMap M) A).1 = det A.1 := by
simp only [LinearMap.coe_mk, AddHom.coe_mk, toSelfAdjointMap, det_mul,
selfAdjoint.mem_iff, det_conjTranspose, det_mul, det_one, RingHom.id_apply]
simp only [SpecialLinearGroup.det_coe, one_mul, star_one, mul_one]
lemma toSelfAdjointMap_apply_σSAL_inl (M : SL(2, )) :
toSelfAdjointMap M (PauliMatrix.σSAL (Sum.inl 0)) =
((‖M.1 0 0‖ ^ 2 + ‖M.1 0 1‖ ^ 2 + ‖M.1 1 0‖ ^ 2 + ‖M.1 1 1‖ ^ 2) / 2) •
PauliMatrix.σSAL (Sum.inl 0) +
(- ((M.1 0 1).re * (M.1 1 1).re + (M.1 0 1).im * (M.1 1 1).im +
(M.1 0 0).im * (M.1 1 0).im + (M.1 0 0).re * (M.1 1 0).re)) • PauliMatrix.σSAL (Sum.inr 0)
+ ((- (M.1 0 0).re * (M.1 1 0).im + ↑(M.1 1 0).re * (M.1 0 0).im
2024-11-11 07:22:36 +00:00
- (M.1 0 1).re * (M.1 1 1).im + (M.1 0 1).im * (M.1 1 1).re)) • PauliMatrix.σSAL (Sum.inr 1)
+ ((- ‖M.1 0 0‖ ^ 2 - ‖M.1 0 1‖ ^ 2 + ‖M.1 1 0‖ ^ 2 + ‖M.1 1 1‖ ^ 2) / 2) •
PauliMatrix.σSAL (Sum.inr 2) := by
simp only [toSelfAdjointMap, PauliMatrix.σSAL, Fin.isValue, Basis.coe_mk, PauliMatrix.σSAL',
PauliMatrix.σ0, LinearMap.coe_mk, AddHom.coe_mk, norm_eq_abs, neg_add_rev, PauliMatrix.σ1,
neg_of, neg_cons, neg_zero, neg_empty, neg_mul, PauliMatrix.σ2, neg_neg, PauliMatrix.σ3]
ext1
simp only [Fin.isValue, AddSubgroup.coe_add, selfAdjoint.val_smul, smul_of, smul_cons, real_smul,
ofReal_div, ofReal_add, ofReal_pow, ofReal_ofNat, mul_one, smul_zero, smul_empty, smul_neg,
ofReal_neg, ofReal_mul, neg_add_rev, neg_neg, of_add_of, add_cons, head_cons, add_zero,
tail_cons, zero_add, empty_add_empty, ofReal_sub]
conv => lhs; erw [← eta_fin_two 1, mul_one]
conv => lhs; lhs; rw [eta_fin_two M.1]
conv => lhs; rhs; rw [eta_fin_two M.1ᴴ]
2024-11-11 07:22:36 +00:00
simp only [Fin.isValue, conjTranspose_apply, RCLike.star_def, cons_mul, Nat.succ_eq_add_one,
Nat.reduceAdd, vecMul_cons, head_cons, smul_cons, smul_eq_mul, smul_empty, tail_cons,
empty_vecMul, add_zero, add_cons, empty_add_empty, empty_mul, Equiv.symm_apply_apply,
EmbeddingLike.apply_eq_iff_eq]
rw [mul_conj', mul_conj', mul_conj', mul_conj']
ext x y
match x, y with
| 0, 0 =>
2024-11-11 07:22:36 +00:00
simp only [Fin.isValue, norm_eq_abs, cons_val', cons_val_zero, empty_val', cons_val_fin_one]
ring_nf
| 0, 1 =>
2024-11-11 07:22:36 +00:00
simp only [Fin.isValue, norm_eq_abs, cons_val', cons_val_one, head_cons, empty_val',
cons_val_fin_one, cons_val_zero]
ring_nf
rw [← re_add_im (M.1 0 0), ← re_add_im (M.1 0 1), ← re_add_im (M.1 1 0), ← re_add_im (M.1 1 1)]
2024-11-11 07:22:36 +00:00
simp only [Fin.isValue, map_add, conj_ofReal, _root_.map_mul, conj_I, mul_neg, add_re,
ofReal_re, mul_re, I_re, mul_zero, ofReal_im, I_im, mul_one, sub_self, add_zero, add_im,
mul_im, zero_add]
ring_nf
2024-11-11 07:22:36 +00:00
simp only [Fin.isValue, I_sq, mul_neg, mul_one, neg_mul, neg_neg, one_mul, sub_neg_eq_add]
ring
| 1, 0 =>
2024-11-11 07:22:36 +00:00
simp only [Fin.isValue, norm_eq_abs, cons_val', cons_val_zero, empty_val', cons_val_fin_one,
cons_val_one, head_fin_const]
ring_nf
rw [← re_add_im (M.1 0 0), ← re_add_im (M.1 0 1), ← re_add_im (M.1 1 0), ← re_add_im (M.1 1 1)]
2024-11-11 07:22:36 +00:00
simp only [Fin.isValue, map_add, conj_ofReal, _root_.map_mul, conj_I, mul_neg, add_re,
ofReal_re, mul_re, I_re, mul_zero, ofReal_im, I_im, mul_one, sub_self, add_zero, add_im,
mul_im, zero_add]
ring_nf
2024-11-11 07:22:36 +00:00
simp only [Fin.isValue, I_sq, mul_neg, mul_one, neg_mul, neg_neg, one_mul, sub_neg_eq_add]
ring
| 1, 1 =>
2024-11-11 07:22:36 +00:00
simp only [Fin.isValue, norm_eq_abs, cons_val', cons_val_one, head_cons, empty_val',
cons_val_fin_one, head_fin_const]
ring_nf
2024-11-10 06:57:41 +00:00
/-- The monoid homomorphisms from `SL(2, )` to matrices indexed by `Fin 1 ⊕ Fin 3`
formed by the action `M A Mᴴ`. -/
def toMatrix : SL(2, ) →* Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) where
toFun M := LinearMap.toMatrix PauliMatrix.σSAL PauliMatrix.σSAL (toSelfAdjointMap M)
map_one' := by
simp only [toSelfAdjointMap, SpecialLinearGroup.coe_one, one_mul, conjTranspose_one,
mul_one, Subtype.coe_eta]
erw [LinearMap.toMatrix_one]
map_mul' M N := by
simp only
rw [← LinearMap.toMatrix_mul]
apply congrArg
ext1 x
simp only [toSelfAdjointMap, SpecialLinearGroup.coe_mul, conjTranspose_mul,
LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply, Subtype.mk.injEq]
noncomm_ring
open Lorentz in
lemma toMatrix_apply_contrMod (M : SL(2, )) (v : ContrMod 3) :
(toMatrix M) *ᵥ v = ContrMod.toSelfAdjoint.symm
((toSelfAdjointMap M) (ContrMod.toSelfAdjoint v)) := by
2024-11-09 18:06:48 +00:00
simp only [ContrMod.mulVec, toMatrix, MonoidHom.coe_mk, OneHom.coe_mk]
obtain ⟨a, ha⟩ := ContrMod.toSelfAdjoint.symm.surjective v
subst ha
rw [LinearEquiv.apply_symm_apply]
2024-11-09 18:06:48 +00:00
simp only [ContrMod.toSelfAdjoint, LinearEquiv.trans_symm, LinearEquiv.symm_symm,
LinearEquiv.trans_apply]
2024-11-09 18:12:05 +00:00
change ContrMod.toFin1dEquiv.symm
((((LinearMap.toMatrix PauliMatrix.σSAL PauliMatrix.σSAL) (toSelfAdjointMap M)))
2024-11-09 18:06:48 +00:00
*ᵥ (((Finsupp.linearEquivFunOnFinite (Fin 1 ⊕ Fin 3)) (PauliMatrix.σSAL.repr a)))) = _
apply congrArg
erw [LinearMap.toMatrix_mulVec_repr]
rfl
2024-06-15 17:08:08 -04:00
lemma toMatrix_mem_lorentzGroup (M : SL(2, )) : toMatrix M ∈ LorentzGroup 3 := by
2024-07-02 10:13:52 -04:00
rw [LorentzGroup.mem_iff_norm]
intro x
apply ofReal_injective
rw [Lorentz.contrContrContractField.same_eq_det_toSelfAdjoint]
rw [toMatrix_apply_contrMod]
rw [LinearEquiv.apply_symm_apply]
rw [toSelfAdjointMap_apply_det]
rw [Lorentz.contrContrContractField.same_eq_det_toSelfAdjoint]
/-- The group homomorphism from `SL(2, )` to the Lorentz group `𝓛`. -/
@[simps!]
def toLorentzGroup : SL(2, ) →* LorentzGroup 3 where
toFun M := ⟨toMatrix M, toMatrix_mem_lorentzGroup M⟩
map_one' := by
simp only [_root_.map_one]
rfl
map_mul' M N := by
ext1
simp only [_root_.map_mul, lorentzGroupIsGroup_mul_coe]
2024-10-16 10:39:11 +00:00
lemma toLorentzGroup_eq_σSAL (M : SL(2, )) :
toLorentzGroup M = LinearMap.toMatrix
PauliMatrix.σSAL PauliMatrix.σSAL (toSelfAdjointMap M) := by
2024-10-16 10:39:11 +00:00
rfl
lemma toSelfAdjointMap_basis (i : Fin 1 ⊕ Fin 3) :
toSelfAdjointMap M (PauliMatrix.σSAL i) =
∑ j, (toLorentzGroup M).1 j i • PauliMatrix.σSAL j := by
2024-10-16 10:39:11 +00:00
rw [toLorentzGroup_eq_σSAL]
simp only [LinearMap.toMatrix_apply, Finset.univ_unique,
Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton]
2024-10-16 10:57:46 +00:00
nth_rewrite 1 [← (Basis.sum_repr PauliMatrix.σSAL
((toSelfAdjointMap M) (PauliMatrix.σSAL i)))]
2024-10-19 10:34:30 +00:00
rfl
2024-10-16 10:39:11 +00:00
lemma toSelfAdjointMap_σSA (i : Fin 1 ⊕ Fin 3) :
toSelfAdjointMap M (PauliMatrix.σSA i) =
2024-10-16 10:39:11 +00:00
∑ j, (toLorentzGroup M⁻¹).1 i j • PauliMatrix.σSA j := by
2024-11-08 11:16:16 +00:00
have h1 : (toLorentzGroup M⁻¹).1 = minkowskiMatrix.dual (toLorentzGroup M).1 := by
2024-10-16 10:39:11 +00:00
simp
simp only [h1]
rw [PauliMatrix.σSA_minkowskiMetric_σSAL, _root_.map_smul]
rw [toSelfAdjointMap_basis]
2024-10-16 10:39:11 +00:00
rw [Finset.smul_sum]
apply congrArg
funext j
rw [smul_smul, PauliMatrix.σSA_minkowskiMetric_σSAL, smul_smul]
apply congrFun
apply congrArg
2024-11-08 11:16:16 +00:00
exact Eq.symm (minkowskiMatrix.dual_apply_minkowskiMatrix ((toLorentzGroup M).1) i j)
2024-10-16 10:39:11 +00:00
/-- The first column of the Lorentz matrix formed from an element of `SL(2, )`. -/
lemma toLorentzGroup_fst_col (M : SL(2, )) :
(fun μ => (toLorentzGroup M).1 μ (Sum.inl 0)) = fun μ =>
match μ with
| Sum.inl 0 => ((‖M.1 0 0‖ ^ 2 + ‖M.1 0 1‖ ^ 2 + ‖M.1 1 0‖ ^ 2 + ‖M.1 1 1‖ ^ 2) / 2)
2024-11-11 07:22:36 +00:00
| Sum.inr 0 => (- ((M.1 0 1).re * (M.1 1 1).re + (M.1 0 1).im * (M.1 1 1).im +
(M.1 0 0).im * (M.1 1 0).im + (M.1 0 0).re * (M.1 1 0).re))
| Sum.inr 1 => ((- (M.1 0 0).re * (M.1 1 0).im + ↑(M.1 1 0).re * (M.1 0 0).im
- (M.1 0 1).re * (M.1 1 1).im + (M.1 0 1).im * (M.1 1 1).re))
| Sum.inr 2 => ((- ‖M.1 0 0‖ ^ 2 - ‖M.1 0 1‖ ^ 2 + ‖M.1 1 0‖ ^ 2 + ‖M.1 1 1‖ ^ 2) / 2) := by
2024-11-11 07:22:36 +00:00
let k : Fin 1 ⊕ Fin 3 → := fun μ =>
match μ with
| Sum.inl 0 => ((‖M.1 0 0‖ ^ 2 + ‖M.1 0 1‖ ^ 2 + ‖M.1 1 0‖ ^ 2 + ‖M.1 1 1‖ ^ 2) / 2)
2024-11-11 07:22:36 +00:00
| Sum.inr 0 => (- ((M.1 0 1).re * (M.1 1 1).re + (M.1 0 1).im * (M.1 1 1).im +
(M.1 0 0).im * (M.1 1 0).im + (M.1 0 0).re * (M.1 1 0).re))
| Sum.inr 1 => ((- (M.1 0 0).re * (M.1 1 0).im + ↑(M.1 1 0).re * (M.1 0 0).im
- (M.1 0 1).re * (M.1 1 1).im + (M.1 0 1).im * (M.1 1 1).re))
| Sum.inr 2 => ((- ‖M.1 0 0‖ ^ 2 - ‖M.1 0 1‖ ^ 2 + ‖M.1 1 0‖ ^ 2 + ‖M.1 1 1‖ ^ 2) / 2)
change (fun μ => (toLorentzGroup M).1 μ (Sum.inl 0)) = k
have h1 : toSelfAdjointMap M (PauliMatrix.σSAL (Sum.inl 0)) = ∑ μ, k μ • PauliMatrix.σSAL μ := by
simp [Fin.sum_univ_three]
rw [toSelfAdjointMap_apply_σSAL_inl]
abel
rw [toSelfAdjointMap_basis] at h1
have h1x := sub_eq_zero_of_eq h1
rw [← Finset.sum_sub_distrib] at h1x
funext μ
refine sub_eq_zero.mp ?_
refine Fintype.linearIndependent_iff.mp PauliMatrix.σSAL.linearIndependent
(fun x => ((toLorentzGroup M).1 x (Sum.inl 0) - k x)) ?_ μ
rw [← h1x]
congr
funext x
exact sub_smul ((toLorentzGroup M).1 x (Sum.inl 0)) (k x) (PauliMatrix.σSAL x)
/-- The first element of the image of `SL(2, )` in the Lorentz group. -/
lemma toLorentzGroup_inl_inl (M : SL(2, )) :
(toLorentzGroup M).1 (Sum.inl 0) (Sum.inl 0) =
((‖M.1 0 0‖ ^ 2 + ‖M.1 0 1‖ ^ 2 + ‖M.1 1 0‖ ^ 2 + ‖M.1 1 1‖ ^ 2) / 2) := by
change (fun μ => (toLorentzGroup M).1 μ (Sum.inl 0)) (Sum.inl 0) = _
rw [toLorentzGroup_fst_col]
/-- The image of `SL(2, )` in the Lorentz group is orthochronous. -/
lemma toLorentzGroup_isOrthochronous (M : SL(2, )) :
LorentzGroup.IsOrthochronous (toLorentzGroup M) := by
rw [LorentzGroup.IsOrthochronous]
rw [toLorentzGroup_inl_inl]
apply div_nonneg
· apply add_nonneg
· apply add_nonneg
· apply add_nonneg
· exact sq_nonneg _
· exact sq_nonneg _
· exact sq_nonneg _
· exact sq_nonneg _
· exact zero_le_two
2024-06-15 17:08:08 -04:00
/-!
## Homomorphism to the restricted Lorentz group
The homomorphism `toLorentzGroup` restricts to a homomorphism to the restricted Lorentz group.
In this section we will define this homomorphism.
-/
informal_lemma toLorentzGroup_det_one where
math :≈ "The determinant of the image of `SL(2, )` in the Lorentz group is one."
deps :≈ [``toLorentzGroup]
informal_lemma toRestrictedLorentzGroup where
math :≈ "The homomorphism from `SL(2, )` to the restricted Lorentz group."
deps :≈ [``toLorentzGroup, ``toLorentzGroup_det_one, ``toLorentzGroup_isOrthochronous,
``LorentzGroup.Restricted]
2024-07-09 16:31:26 -04:00
/-! TODO: Define homomorphism from `SL(2, )` to the restricted Lorentz group. -/
end
end SL2C
2024-11-10 06:48:04 +00:00
end Lorentz