PhysLean/HepLean/SpaceTime/LorentzTensor/Basic.lean

175 lines
5 KiB
Text
Raw Normal View History

2024-07-03 06:40:06 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzVector.Basic
2024-07-11 09:16:36 -04:00
import Mathlib.CategoryTheory.Limits.FintypeCat
2024-07-03 06:40:06 -04:00
/-!
# Lorentz Tensors
2024-07-11 09:16:36 -04:00
In this file we define real Lorentz tensors.
2024-07-03 06:40:06 -04:00
2024-07-11 09:16:36 -04:00
We implicitly follow the definition of a modular operad.
This will relation should be made explicit in the future.
2024-07-03 06:40:06 -04:00
2024-07-11 09:16:36 -04:00
## References
-- For modular operads see: [Raynor][raynor2021graphical]
2024-07-03 06:40:06 -04:00
-/
2024-07-11 09:16:36 -04:00
/-! TODO: Do complex tensors, with Van der Waerden notation for fermions. -/
2024-07-03 06:40:06 -04:00
2024-07-11 09:16:36 -04:00
/-!
## Real Lorentz tensors
2024-07-03 06:40:06 -04:00
2024-07-11 09:16:36 -04:00
-/
/-- An index of a real Lorentz tensor is up or down. -/
inductive RealLorentzTensor.Colors where
| up : RealLorentzTensor.Colors
| down : RealLorentzTensor.Colors
2024-07-03 06:40:06 -04:00
2024-07-11 09:16:36 -04:00
def RealLorentzTensor.ColorsIndex (d : ) (μ : RealLorentzTensor.Colors) : Type :=
match μ with
| RealLorentzTensor.Colors.up => Fin 1 ⊕ Fin d
| RealLorentzTensor.Colors.down => Fin 1 ⊕ Fin d
/-- A Lorentz Tensor defined by its coordinate map. -/
structure RealLorentzTensor (d : ) (X : FintypeCat) where
color : X → RealLorentzTensor.Colors
coord : ((x : X) → RealLorentzTensor.ColorsIndex d (color x)) →
2024-07-03 06:40:06 -04:00
2024-07-11 09:16:36 -04:00
namespace RealLorentzTensor
2024-07-03 06:40:06 -04:00
open BigOperators
open CategoryTheory
2024-07-11 09:16:36 -04:00
universe u1
variable {d : } {X Y Z : FintypeCat.{u1}}
/-- An `IndexType` for a tensor is an element of
`(x : X) → RealLorentzTensor.ColorsIndex d (T.color x)`. -/
@[simp]
def IndexType (T : RealLorentzTensor d X) : Type u1 :=
(x : X) → RealLorentzTensor.ColorsIndex d (T.color x)
lemma indexType_eq {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color) :
T₁.IndexType = T₂.IndexType := by
simp only [IndexType]
rw [h]
lemma ext {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color)
(h' : T₁.coord = T₂.coord ∘ Equiv.cast (indexType_eq h)) : T₁ = T₂ := by
cases T₁
cases T₂
simp_all only [IndexType, mk.injEq]
apply And.intro h
simp only at h
subst h
simp only [Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] at h'
subst h'
rfl
/-- The involution acting on colors. -/
def τ : Colors → Colors
| Colors.up => Colors.down
| Colors.down => Colors.up
/-- The map τ is an involution. -/
lemma τ_involutive : Function.Involutive τ := by
intro x
cases x <;> rfl
/-- The color associated with an element of `x ∈ X` for a tensor `T`. -/
def ch {X : FintypeCat} (x : X) (T : RealLorentzTensor d X) : Colors := T.color x
2024-07-03 06:40:06 -04:00
2024-07-11 09:16:36 -04:00
/-!
## Congruence
2024-07-03 06:40:06 -04:00
2024-07-11 09:16:36 -04:00
-/
2024-07-03 06:40:06 -04:00
/- An equivalence between `X → Fin 1 ⊕ Fin d` and `Y → Fin 1 ⊕ Fin d` given an isomorphism
between `X` and `Y`. -/
2024-07-11 09:16:36 -04:00
@[simps!]
def congrSetIndexType (d : ) (f : X ≃ Y) (i : X → Colors) :
((x : X) → ColorsIndex d (i x)) ≃ ((y : Y) → ColorsIndex d ((Equiv.piCongrLeft' _ f) i y)) :=
Equiv.piCongrLeft' _ (f)
/-- Given an equivalence of indexing sets, a map on Lorentz tensors. -/
@[simps!]
def congrSetMap (f : X ≃ Y) (T : RealLorentzTensor d X) : RealLorentzTensor d Y where
color := (Equiv.piCongrLeft' _ f) T.color
coord := (Equiv.piCongrLeft' _ (congrSetIndexType d f T.color)) T.coord
lemma congrSetMap_trans (f : X ≃ Y) (g : Y ≃ Z) (T : RealLorentzTensor d X) :
congrSetMap g (congrSetMap f T) = congrSetMap (f.trans g) T := by
apply ext (by rfl)
have h1 : (congrSetIndexType d (f.trans g) T.color) = (congrSetIndexType d f T.color).trans
(congrSetIndexType d g ((Equiv.piCongrLeft' (fun _ => Colors) f) T.color)) := by
simp only [Equiv.piCongrLeft'_apply, Equiv.symm_trans_apply, congrSetIndexType]
exact Equiv.coe_inj.mp rfl
simp only [congrSetMap, Equiv.piCongrLeft'_apply, IndexType, Equiv.symm_trans_apply, h1,
Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq]
rfl
/-- An equivalence of Tensors given an equivalence of underlying sets. -/
@[simps!]
def congrSet (f : X ≃ Y) : RealLorentzTensor d X ≃ RealLorentzTensor d Y where
toFun := congrSetMap f
invFun := congrSetMap f.symm
left_inv T := by
rw [congrSetMap_trans, Equiv.self_trans_symm]
rfl
right_inv T := by
rw [congrSetMap_trans, Equiv.symm_trans_self]
rfl
lemma congrSet_trans (f : X ≃ Y) (g : Y ≃ Z) :
(@congrSet d _ _ f).trans (congrSet g) = congrSet (f.trans g) := by
refine Equiv.coe_inj.mp ?_
funext T
exact congrSetMap_trans f g T
lemma congrSet_refl : @congrSet d _ _ (Equiv.refl X) = Equiv.refl _ := by
rfl
2024-07-03 06:40:06 -04:00
2024-07-11 09:16:36 -04:00
/-!
## Multiplication
-/
/-! TODO: Following the ethos of modular operads, define multiplication of Lorentz tensors. -/
/-!
## Contraction of indices
-/
/-! TODO: Following the ethos of modular operads, define contraction of Lorentz tensors. -/
/-!
## Rising and lowering indices
Rising or lowering an index corresponds to changing the color of that index.
2024-07-11 09:20:27 -04:00
2024-07-11 09:16:36 -04:00
-/
/-! TODO: Define the rising and lowering of indices using contraction with the metric. -/
2024-07-03 06:40:06 -04:00
/-!
## Graphical species and Lorentz tensors
-/
2024-07-11 09:16:36 -04:00
/-! TODO: From Lorentz tensors graphical species. -/
/-! TODO: Show that the action of the Lorentz group defines an action on the graphical species. -/
2024-07-03 06:40:06 -04:00
2024-07-11 09:16:36 -04:00
end RealLorentzTensor