PhysLean/HepLean/PerturbationTheory/Algebras/FieldOpAlgebra/StaticWickTheorem.lean

99 lines
3.4 KiB
Text
Raw Normal View History

2025-01-30 12:45:00 +00:00
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.StaticContract
import HepLean.PerturbationTheory.WicksTheorem
import HepLean.Meta.Remark.Basic
/-!
# Static Wick's theorem
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
open CrAnAlgebra
open HepLean.List
open WickContraction
open FieldStatistic
namespace FieldOpAlgebra
lemma static_wick_theorem_nil : ofFieldOpList [] = ∑ (φsΛ : WickContraction [].length),
φsΛ.sign (𝓕 := 𝓕) • φsΛ.staticContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ) := by
simp only [ofFieldOpList, ofStateList_nil, map_one, List.length_nil]
rw [sum_WickContraction_nil, uncontractedListGet, nil_zero_uncontractedList]
simp [sign, empty, staticContract]
theorem static_wick_theorem : (φs : List 𝓕.States) →
ofFieldOpList φs = ∑ (φsΛ : WickContraction φs.length),
φsΛ.sign • φsΛ.staticContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)
| [] => static_wick_theorem_nil
| φ :: φs => by
rw [ofFieldOpList_cons]
rw [static_wick_theorem φs]
rw [show (φ :: φs) = φs.insertIdx (⟨0, Nat.zero_lt_succ φs.length⟩ : Fin φs.length.succ) φ
from rfl]
conv_rhs => rw [insertLift_sum ]
rw [Finset.mul_sum]
apply Finset.sum_congr rfl
intro c _
trans (sign φs c • ↑c.staticContract * (ofFieldOp φ * normalOrder (ofFieldOpList [c]ᵘᶜ)))
· have ht := Subalgebra.mem_center_iff.mp (Subalgebra.smul_mem (Subalgebra.center _)
(c.staticContract).2 c.sign )
conv_rhs => rw [← mul_assoc, ← ht]
simp [mul_assoc]
rw [ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum]
rw [Finset.mul_sum]
rw [uncontractedStatesEquiv_list_sum]
refine Finset.sum_congr rfl (fun n _ => ?_)
match n with
| none =>
simp [uncontractedStatesEquiv, contractStateAtIndex]
erw [sign_insert_none_zero]
rfl
| some n =>
simp
rw [normalOrder_uncontracted_some]
simp [← mul_assoc]
rw [← smul_mul_assoc]
conv_rhs => rw [← smul_mul_assoc]
congr 1
rw [staticConract_insertAndContract_some_eq_mul_contractStateAtIndex_lt]
swap
· simp
rw [smul_smul]
by_cases hn : GradingCompliant φs c ∧ (𝓕|>ₛφ) = (𝓕|>ₛ φs[n.1])
· congr 1
swap
· have h1 := c.staticContract.2
rw [@Subalgebra.mem_center_iff] at h1
rw [h1]
erw [sign_insert_some]
rw [mul_assoc, mul_comm c.sign, ← mul_assoc]
rw [signInsertSome_mul_filter_contracted_of_not_lt]
simp
simp
exact hn
· simp at hn
by_cases h0 : ¬ GradingCompliant φs c
· rw [staticContract_of_not_gradingCompliant]
simp
exact h0
· simp_all
have h1 : contractStateAtIndex φ [c]ᵘᶜ ((uncontractedStatesEquiv φs c) (some n)) = 0 := by
simp only [contractStateAtIndex, uncontractedStatesEquiv, Equiv.optionCongr_apply,
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply,
instCommGroup.eq_1, Fin.coe_cast, Fin.getElem_fin, smul_eq_zero]
right
simp [uncontractedListGet]
rw [superCommute_anPart_ofState_diff_grade_zero]
exact hn
rw [h1]
simp
end FieldOpAlgebra
end FieldSpecification