PhysLean/HepLean/FeynmanDiagrams/PhiFour/Basic.lean

584 lines
21 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Logic.Equiv.Fin
import Mathlib.Tactic.FinCases
import Mathlib.Data.Finset.Card
import Mathlib.CategoryTheory.IsomorphismClasses
import Mathlib.Data.Fintype.Pi
import Mathlib.CategoryTheory.Limits.Shapes.Terminal
import Mathlib.Data.Fintype.Prod
import Mathlib.Data.Fintype.Perm
import Mathlib.Combinatorics.SimpleGraph.Basic
import Mathlib.Combinatorics.SimpleGraph.Connectivity
/-!
# Feynman diagrams in Phi^4 theory
The aim of this file is to start building up the theory of Feynman diagrams in the context of
Phi^4 theory.
## References
- The approach taking to defining Feynman diagrams is based on:
Theo Johnson-Freyd (https://mathoverflow.net/users/78/theo-johnson-freyd), How to count symmetry
factors of Feynman diagrams? , URL (version: 2010-06-03): https://mathoverflow.net/q/26938
## TODO
- Develop a way to display Feynman diagrams.
- Define a connected diagram.
- Define the Feynman rules, and perform an example calculation.
- Determine an efficent way to calculate symmetry factors. Currently there is a method, but
it will not work for large diagrams as it scales factorially with the number of half-edges.
-/
namespace PhiFour
open CategoryTheory
/-- Edges in Φ^4 internal `0`.
Here `Type` is the category in which half-edges live. In general `Type` will be e.g.
`Type × Type` with more fields. -/
def edgeType : Fin 1 → Type
| 0 => Fin 2
/-- Vertices in Φ^4, can either be `external` corresponding to `0`, or a `phi^4` interaction
corresponding to `1`. -/
def vertexType : Fin 2 → Type
| 0 => Fin 1
| 1 => Fin 4
/-- The type of vacuum Feynman diagrams for Phi-4 theory. -/
structure FeynmanDiagram where
/-- The type of half edges in the Feynman diagram. Sometimes also called `flags`. -/
𝓱𝓔 : Type
/-- The type of edges in the Feynman diagram. -/
𝓔 : Type
/-- Maps each edge to a label. Labels `0` if it is an external edge,
and labels `1` if an internal edge. -/
𝓔Label : 𝓔 → Fin 1
/-- Maps half-edges to edges. -/
𝓱𝓔To𝓔 : 𝓱𝓔𝓔
/-- Requires that the fiber of the map `𝓱𝓔To𝓔` at `x ∈ 𝓔` agrees with the corresponding
`edgeType`. -/
𝓔Fiber : ∀ x, CategoryTheory.IsIsomorphic (𝓱𝓔To𝓔 ⁻¹' {x} : Type) $ (edgeType ∘ 𝓔Label) x
/-- The type of vertices in the Feynman diagram. -/
𝓥 : Type
/-- Maps each vertex to a label. In this case this map contains no information since
there is only one type of vertex.. -/
𝓥Label : 𝓥 → Fin 2
/-- Maps half-edges to vertices. -/
𝓱𝓔To𝓥 : 𝓱𝓔𝓥
/-- Requires that the fiber of the map `𝓱𝓔To𝓥` at `x ∈ 𝓥` agrees with the corresponding
`vertexType`. -/
𝓥Fiber : ∀ x, CategoryTheory.IsIsomorphic (𝓱𝓔To𝓥 ⁻¹' {x} : Type) $ (vertexType ∘ 𝓥Label) x
namespace FeynmanDiagram
variable (F : FeynmanDiagram)
section Decidability
/-!
## Decidability
The aim of this section is to make it easy to prove the `𝓔Fiber` and `𝓥Fiber` conditions by
showing that they are decidable in cases when everything is finite and nice
(which in practice is always).
--/
lemma fiber_cond_edge_iff_exists {𝓱𝓔 𝓔 : Type} (𝓱𝓔To𝓔 : 𝓱𝓔𝓔) (𝓔Label : 𝓔 → Fin 1) (x : 𝓔) :
(CategoryTheory.IsIsomorphic (𝓱𝓔To𝓔 ⁻¹' {x} : Type) $ (edgeType ∘ 𝓔Label) x)
↔ ∃ (f : 𝓱𝓔To𝓔 ⁻¹' {x} → (edgeType ∘ 𝓔Label) x), Function.Bijective f :=
Iff.intro
(fun h ↦ match h with
| ⟨f1, f2, h1, h2⟩ => ⟨f1, (isIso_iff_bijective f1).mp ⟨f2, h1, h2⟩⟩)
(fun ⟨f1, hb⟩ ↦ match (isIso_iff_bijective f1).mpr hb with
| ⟨f2, h1, h2⟩ => ⟨f1, f2, h1, h2⟩)
lemma fiber_cond_vertex_iff_exists {𝓱𝓥 𝓥 : Type} (𝓱𝓥To𝓥 : 𝓱𝓥𝓥) (𝓥Label : 𝓥 → Fin 2) (x : 𝓥) :
(CategoryTheory.IsIsomorphic (𝓱𝓥To𝓥 ⁻¹' {x} : Type) $ (vertexType ∘ 𝓥Label) x)
↔ ∃ (f : 𝓱𝓥To𝓥 ⁻¹' {x} → (vertexType ∘ 𝓥Label) x), Function.Bijective f :=
Iff.intro
(fun h ↦ match h with
| ⟨f1, f2, h1, h2⟩ => ⟨f1, (isIso_iff_bijective f1).mp ⟨f2, h1, h2⟩⟩)
(fun ⟨f1, hb⟩ ↦ match (isIso_iff_bijective f1).mpr hb with
| ⟨f2, h1, h2⟩ => ⟨f1, f2, h1, h2⟩)
2024-06-14 09:52:59 -04:00
instance {𝓱𝓔 𝓔 : Type} [DecidableEq 𝓔] (𝓱𝓔To𝓔 : 𝓱𝓔𝓔) (x : 𝓔):
DecidablePred (fun y => y ∈ 𝓱𝓔To𝓔 ⁻¹' {x}) := fun y =>
match decEq (𝓱𝓔To𝓔 y) x with
2024-06-14 09:52:59 -04:00
| isTrue h => isTrue h
| isFalse h => isFalse h
2024-06-14 09:52:59 -04:00
instance {𝓱𝓔 𝓔 : Type} [DecidableEq 𝓱𝓔] (𝓱𝓔To𝓔 : 𝓱𝓔𝓔) (x : 𝓔) :
DecidableEq $ (𝓱𝓔To𝓔 ⁻¹' {x}) := Subtype.instDecidableEq
instance edgeTypeFintype (x : Fin 1) : Fintype (edgeType x) :=
match x with
| 0 => Fin.fintype 2
instance edgeTypeDecidableEq (x : Fin 1) : DecidableEq (edgeType x) :=
match x with
| 0 => instDecidableEqFin 2
instance vertexTypeFintype (x : Fin 2) : Fintype (vertexType x) :=
match x with
| 0 => Fin.fintype 1
| 1 => Fin.fintype 4
instance vertexTypeDecidableEq (x : Fin 2) : DecidableEq (vertexType x) :=
match x with
| 0 => instDecidableEqFin 1
| 1 => instDecidableEqFin 4
instance {𝓔 : Type} (𝓔Label : 𝓔 → Fin 1) (x : 𝓔) :
DecidableEq ((edgeType ∘ 𝓔Label) x) := edgeTypeDecidableEq (𝓔Label x)
instance {𝓔 : Type} (𝓔Label : 𝓔 → Fin 1) (x : 𝓔) :
Fintype ((edgeType ∘ 𝓔Label) x) := edgeTypeFintype (𝓔Label x)
instance {𝓥 : Type} (𝓥Label : 𝓥 → Fin 2) (x : 𝓥) :
DecidableEq ((vertexType ∘ 𝓥Label) x) := vertexTypeDecidableEq (𝓥Label x)
instance {𝓥 : Type} (𝓥Label : 𝓥 → Fin 2) (x : 𝓥) :
Fintype ((vertexType ∘ 𝓥Label) x) := vertexTypeFintype (𝓥Label x)
2024-06-14 09:52:59 -04:00
instance {𝓱𝓔 𝓔 : Type} [Fintype 𝓱𝓔] [DecidableEq 𝓱𝓔] [DecidableEq 𝓔]
(𝓱𝓔To𝓔 : 𝓱𝓔𝓔) (𝓔Label : 𝓔 → Fin 1) (x : 𝓔) :
Decidable (CategoryTheory.IsIsomorphic (𝓱𝓔To𝓔 ⁻¹' {x} : Type) $ (edgeType ∘ 𝓔Label) x) :=
decidable_of_decidable_of_iff (fiber_cond_edge_iff_exists 𝓱𝓔To𝓔 𝓔Label x).symm
2024-06-14 09:52:59 -04:00
instance {𝓱𝓥 𝓥 : Type} [Fintype 𝓱𝓥] [DecidableEq 𝓱𝓥] [DecidableEq 𝓥]
(𝓱𝓥To𝓥 : 𝓱𝓥𝓥) (𝓥Label : 𝓥 → Fin 2) (x : 𝓥) :
Decidable (CategoryTheory.IsIsomorphic (𝓱𝓥To𝓥 ⁻¹' {x} : Type) $ (vertexType ∘ 𝓥Label) x) :=
decidable_of_decidable_of_iff (fiber_cond_vertex_iff_exists 𝓱𝓥To𝓥 𝓥Label x).symm
end Decidability
section Finiteness
/-!
## Finiteness
As defined above our Feynman diagrams can have non-finite Types of half-edges etc.
We define the class of those Feynman diagrams which are `finite` in the appropriate sense.
In practice, every Feynman diagram considered in the physics literature is `finite`.
-/
/-- A Feynman diagram is said to be finite if its type of half-edges, edges and vertices
are finite and decidable. -/
class IsFiniteDiagram (F : FeynmanDiagram) where
/-- The type `𝓔` is finite. -/
𝓔Fintype : Fintype F.𝓔
/-- The type `𝓔` is decidable. -/
𝓔DecidableEq : DecidableEq F.𝓔
/-- The type `𝓥` is finite. -/
𝓥Fintype : Fintype F.𝓥
/-- The type `𝓥` is decidable. -/
𝓥DecidableEq : DecidableEq F.𝓥
/-- The type `𝓱𝓔` is finite. -/
𝓱𝓔Fintype : Fintype F.𝓱𝓔
/-- The type `𝓱𝓔` is decidable. -/
𝓱𝓔DecidableEq : DecidableEq F.𝓱𝓔
instance {F : FeynmanDiagram} [IsFiniteDiagram F] : Fintype F.𝓔 :=
IsFiniteDiagram.𝓔Fintype
instance {F : FeynmanDiagram} [IsFiniteDiagram F] : DecidableEq F.𝓔 :=
IsFiniteDiagram.𝓔DecidableEq
instance {F : FeynmanDiagram} [IsFiniteDiagram F] : Fintype F.𝓥 :=
IsFiniteDiagram.𝓥Fintype
instance {F : FeynmanDiagram} [IsFiniteDiagram F] : DecidableEq F.𝓥 :=
IsFiniteDiagram.𝓥DecidableEq
instance {F : FeynmanDiagram} [IsFiniteDiagram F] : Fintype F.𝓱𝓔 :=
IsFiniteDiagram.𝓱𝓔Fintype
instance {F : FeynmanDiagram} [IsFiniteDiagram F] : DecidableEq F.𝓱𝓔 :=
IsFiniteDiagram.𝓱𝓔DecidableEq
instance {F : FeynmanDiagram} [IsFiniteDiagram F] : Decidable (Nonempty F.𝓥) :=
decidable_of_iff _ Finset.univ_nonempty_iff
end Finiteness
section categoryOfFeynmanDiagrams
/-!
## The category of Feynman diagrams
Feynman diagrams, as defined above, form a category.
We will be able to use this category to define the symmetry factor of a Feynman diagram,
and the condition on whether a diagram is connected.
-/
/-- A morphism between two `FeynmanDiagram`. -/
structure Hom (F1 F2 : FeynmanDiagram) where
/-- A morphism between half-edges. -/
𝓱𝓔 : F1.𝓱𝓔 ⟶ F2.𝓱𝓔
/-- A morphism between edges. -/
𝓔 : F1.𝓔 ⟶ F2.𝓔
/-- A morphism between vertices. -/
𝓥 : F1.𝓥 ⟶ F2.𝓥
/-- The morphism between edges must respect the labels. -/
𝓔Label : F1.𝓔Label = F2.𝓔Label ∘ 𝓔
/-- The morphism between vertices must respect the labels. -/
𝓥Label : F1.𝓥Label = F2.𝓥Label ∘ 𝓥
/-- The morphism between edges and half-edges must commute with `𝓱𝓔To𝓔`. -/
𝓱𝓔To𝓔 : 𝓔 ∘ F1.𝓱𝓔To𝓔 = F2.𝓱𝓔To𝓔𝓱𝓔
/-- The morphism between vertices and half-edges must commute with `𝓱𝓔To𝓥`. -/
𝓱𝓔To𝓥 : 𝓥 ∘ F1.𝓱𝓔To𝓥 = F2.𝓱𝓔To𝓥𝓱𝓔
namespace Hom
lemma ext {F1 F2 : FeynmanDiagram} {f g : Hom F1 F2} (h1 : f.𝓱𝓔 = g.𝓱𝓔)
(h2 : f.𝓔 = g.𝓔) (h3 : f.𝓥 = g.𝓥) : f = g := by
cases f; cases g
simp_all only
/-- The identity morphism from a Feynman diagram to itself. -/
@[simps!]
def id (F : FeynmanDiagram) : Hom F F where
𝓱𝓔 := 𝟙 F.𝓱𝓔
𝓔 := 𝟙 F.𝓔
𝓥 := 𝟙 F.𝓥
𝓔Label := rfl
𝓥Label := rfl
𝓱𝓔To𝓔 := rfl
𝓱𝓔To𝓥 := rfl
/-- Composition of morphisms between Feynman diagrams. -/
@[simps!]
def comp {F1 F2 F3 : FeynmanDiagram} (f : Hom F1 F2) (g : Hom F2 F3) : Hom F1 F3 where
𝓱𝓔 := f.𝓱𝓔 ≫ g.𝓱𝓔
𝓔 := f.𝓔 ≫ g.𝓔
𝓥 := f.𝓥 ≫ g.𝓥
𝓔Label := by
ext
simp [f.𝓔Label, g.𝓔Label]
𝓥Label := by
ext x
simp [f.𝓥Label, g.𝓥Label]
𝓱𝓔To𝓔 := by
rw [types_comp, types_comp, Function.comp.assoc]
rw [f.𝓱𝓔To𝓔, ← Function.comp.assoc, g.𝓱𝓔To𝓔]
rfl
𝓱𝓔To𝓥 := by
rw [types_comp, types_comp, Function.comp.assoc]
rw [f.𝓱𝓔To𝓥, ← Function.comp.assoc, g.𝓱𝓔To𝓥]
rfl
/-- The condition on a triplet of maps for them to form a morphism of Feynman diagrams. -/
def Cond {F1 F2 : FeynmanDiagram} (f𝓱𝓔 : F1.𝓱𝓔 → F2.𝓱𝓔) (f𝓔 : F1.𝓔 → F2.𝓔)
(f𝓥 : F1.𝓥 → F2.𝓥) : Prop :=
F1.𝓔Label = F2.𝓔Label ∘ f𝓔 ∧ F1.𝓥Label = F2.𝓥Label ∘ f𝓥
f𝓔 ∘ F1.𝓱𝓔To𝓔 = F2.𝓱𝓔To𝓔 ∘ f𝓱𝓔 ∧ f𝓥 ∘ F1.𝓱𝓔To𝓥 = F2.𝓱𝓔To𝓥 ∘ f𝓱𝓔
instance {F1 F2 : FeynmanDiagram} [IsFiniteDiagram F1] [IsFiniteDiagram F2]
(f𝓱𝓔 : F1.𝓱𝓔 → F2.𝓱𝓔) (f𝓔 : F1.𝓔 → F2.𝓔) (f𝓥 : F1.𝓥 → F2.𝓥) :
Decidable (Cond f𝓱𝓔 f𝓔 f𝓥) :=
@And.decidable _ _ _ $
@And.decidable _ _ _ $
@And.decidable _ _ _ _
end Hom
@[simps!]
instance : Category FeynmanDiagram where
Hom := Hom
id := Hom.id
comp := Hom.comp
/-- The functor from the category of Feynman diagrams to `Type` taking a feynman diagram
to its set of half-edges. -/
def toHalfEdges : FeynmanDiagram ⥤ Type where
obj F := F.𝓱𝓔
map f := f.𝓱𝓔
/-- The functor from the category of Feynman diagrams to `Type` taking a feynman diagram
to its set of edges. -/
def toEdges : FeynmanDiagram ⥤ Type where
obj F := F.𝓔
map f := f.𝓔
/-- The functor from the category of Feynman diagrams to `Type` taking a feynman diagram
to its set of vertices. -/
def toVertices : FeynmanDiagram ⥤ Type where
obj F := F.𝓥
map f := f.𝓥
lemma 𝓱𝓔_bijective_of_isIso {F1 F2 : FeynmanDiagram} (f : F1 ⟶ F2) [IsIso f] :
f.𝓱𝓔.Bijective :=
(isIso_iff_bijective f.𝓱𝓔).mp $ Functor.map_isIso toHalfEdges f
lemma 𝓔_bijective_of_isIso {F1 F2 : FeynmanDiagram} (f : F1 ⟶ F2) [IsIso f] :
f.𝓔.Bijective :=
(isIso_iff_bijective f.𝓔).mp $ Functor.map_isIso toEdges f
lemma 𝓥_bijective_of_isIso {F1 F2 : FeynmanDiagram} (f : F1 ⟶ F2) [IsIso f] :
f.𝓥.Bijective :=
(isIso_iff_bijective f.𝓥).mp $ Functor.map_isIso toVertices f
/-- An isomorphism formed from an equivalence between the types of half-edges, edges and vertices
satisfying the appropriate conditions. -/
def mkIso {F1 F2 : FeynmanDiagram} (f𝓱𝓔 : F1.𝓱𝓔 ≃ F2.𝓱𝓔)
(f𝓔 : F1.𝓔 ≃ F2.𝓔) (f𝓥 : F1.𝓥 ≃ F2.𝓥)
(h𝓔Label : F1.𝓔Label = F2.𝓔Label ∘ f𝓔)
(h𝓥Label : F1.𝓥Label = F2.𝓥Label ∘ f𝓥)
(h𝓱𝓔To𝓔 : f𝓔 ∘ F1.𝓱𝓔To𝓔 = F2.𝓱𝓔To𝓔 ∘ f𝓱𝓔)
(h𝓱𝓔To𝓥 : f𝓥 ∘ F1.𝓱𝓔To𝓥 = F2.𝓱𝓔To𝓥 ∘ f𝓱𝓔) : F1 ≅ F2 where
hom := Hom.mk f𝓱𝓔 f𝓔 f𝓥 h𝓔Label h𝓥Label h𝓱𝓔To𝓔 h𝓱𝓔To𝓥
inv := Hom.mk f𝓱𝓔.symm f𝓔.symm f𝓥.symm
(((Iso.eq_inv_comp f𝓔.toIso).mpr h𝓔Label.symm).trans (types_comp _ _))
(((Iso.eq_inv_comp f𝓥.toIso).mpr h𝓥Label.symm).trans (types_comp _ _))
((Iso.comp_inv_eq f𝓔.toIso).mpr $ (Iso.eq_inv_comp f𝓱𝓔.toIso).mpr $
(types_comp _ _).symm.trans (Eq.trans h𝓱𝓔To𝓔.symm (types_comp _ _)))
((Iso.comp_inv_eq f𝓥.toIso).mpr $ (Iso.eq_inv_comp f𝓱𝓔.toIso).mpr $
(types_comp _ _).symm.trans (Eq.trans h𝓱𝓔To𝓥.symm (types_comp _ _)))
hom_inv_id := by
apply Hom.ext
ext a
simp only [instCategory_comp_𝓱𝓔, Equiv.symm_apply_apply, instCategory_id_𝓱𝓔]
ext a
simp only [instCategory_comp_𝓔, Equiv.symm_apply_apply, instCategory_id_𝓔]
ext a
simp only [instCategory_comp_𝓥, Equiv.symm_apply_apply, instCategory_id_𝓥]
inv_hom_id := by
apply Hom.ext
ext a
simp only [instCategory_comp_𝓱𝓔, Equiv.apply_symm_apply, instCategory_id_𝓱𝓔]
ext a
simp only [instCategory_comp_𝓔, Equiv.apply_symm_apply, instCategory_id_𝓔]
ext a
simp only [instCategory_comp_𝓥, Equiv.apply_symm_apply, instCategory_id_𝓥]
lemma isIso_of_bijections {F1 F2 : FeynmanDiagram} (f : F1 ⟶ F2)
(h𝓱𝓔 : f.𝓱𝓔.Bijective) (h𝓔 : f.𝓔.Bijective) (h𝓥 : f.𝓥.Bijective) :
IsIso f :=
Iso.isIso_hom $ mkIso (Equiv.ofBijective f.𝓱𝓔 h𝓱𝓔) (Equiv.ofBijective f.𝓔 h𝓔)
(Equiv.ofBijective f.𝓥 h𝓥) f.𝓔Label f.𝓥Label f.𝓱𝓔To𝓔 f.𝓱𝓔To𝓥
lemma isIso_iff_all_bijective {F1 F2 : FeynmanDiagram} (f : F1 ⟶ F2) :
IsIso f ↔ f.𝓱𝓔.Bijective ∧ f.𝓔.Bijective ∧ f.𝓥.Bijective :=
Iff.intro
(fun _ ↦ ⟨𝓱𝓔_bijective_of_isIso f, 𝓔_bijective_of_isIso f, 𝓥_bijective_of_isIso f⟩)
(fun ⟨h𝓱𝓔, h𝓔, h𝓥⟩ ↦ isIso_of_bijections f h𝓱𝓔 h𝓔 h𝓥)
/-- An equivalence between the isomorphism class of a Feynman diagram an
permutations of the half-edges, edges and vertices satisfying the `Hom.cond`. -/
def isoEquivBijec {F : FeynmanDiagram} :
(F ≅ F) ≃ {S : Equiv.Perm F.𝓱𝓔 × Equiv.Perm F.𝓔 × Equiv.Perm F.𝓥 //
Hom.Cond S.1 S.2.1 S.2.2} where
toFun f := ⟨⟨(toHalfEdges.mapIso f).toEquiv,
(toEdges.mapIso f).toEquiv , (toVertices.mapIso f).toEquiv⟩,
f.hom.𝓔Label, f.hom.𝓥Label, f.hom.𝓱𝓔To𝓔, f.hom.𝓱𝓔To𝓥
invFun S := mkIso S.1.1 S.1.2.1 S.1.2.2 S.2.1 S.2.2.1 S.2.2.2.1 S.2.2.2.2
left_inv _ := rfl
right_inv _ := rfl
instance {F : FeynmanDiagram} [IsFiniteDiagram F] :
Fintype (F ≅ F) :=
Fintype.ofEquiv _ isoEquivBijec.symm
end categoryOfFeynmanDiagrams
section symmetryFactors
/-!
## Symmetry factors
The symmetry factor of a Feynman diagram is the cardinality of the group of automorphisms of that
diagram. In this section we define symmetry factors for Feynman diagrams which are
finite.
-/
/-- The symmetry factor is the cardinality of the set of isomorphisms of the Feynman diagram. -/
def symmetryFactor (F : FeynmanDiagram) [IsFiniteDiagram F] : :=
Fintype.card (F ≅ F)
end symmetryFactors
section connectedness
/-!
## Connectedness
Given a Feynman diagram we can create a simple graph based on the obvious adjacency relation.
A feynman diagram is connected if its simple graph is connected.
-/
/-- A relation on the vertices of Feynman diagrams. The proposition is true if the two
vertices are not equal and are connected by a single edge. -/
@[simp]
def adjRelation (F : FeynmanDiagram) : F.𝓥 → F.𝓥 → Prop := fun x y =>
x ≠ y ∧
∃ (a b : F.𝓱𝓔), F.𝓱𝓔To𝓔 a = F.𝓱𝓔To𝓔 b ∧ F.𝓱𝓔To𝓥 a = x ∧ F.𝓱𝓔To𝓥 b = y
/-- From a Feynman diagram the simple graph showing those vertices which are connected. -/
def toSimpleGraph (F : FeynmanDiagram) : SimpleGraph F.𝓥 where
Adj := adjRelation F
symm := by
intro x y h
apply And.intro (Ne.symm h.1)
obtain ⟨a, b, hab⟩ := h.2
exact ⟨b, a, ⟨hab.1.symm, hab.2.2, hab.2.1⟩⟩
loopless := by
intro x h
simp at h
instance {F : FeynmanDiagram} [IsFiniteDiagram F] : DecidableRel F.toSimpleGraph.Adj := fun _ _ =>
And.decidable
instance {F : FeynmanDiagram} [IsFiniteDiagram F] :
Decidable (F.toSimpleGraph.Preconnected ∧ Nonempty F.𝓥) :=
@And.decidable _ _ _ _
instance {F : FeynmanDiagram} [IsFiniteDiagram F] : Decidable F.toSimpleGraph.Connected :=
decidable_of_iff _ (SimpleGraph.connected_iff F.toSimpleGraph).symm
/-- We say a Feynman diagram is connected if its simple graph is connected. -/
def Connected (F : FeynmanDiagram) : Prop := F.toSimpleGraph.Connected
instance {F : FeynmanDiagram} [IsFiniteDiagram F] : Decidable (Connected F) :=
PhiFour.FeynmanDiagram.instDecidableConnected𝓥ToSimpleGraphOfIsFiniteDiagram
end connectedness
section examples
/-!
## Examples
In this section we give examples of Feynman diagrams in Phi^4 theory.
Symmetry factors can be compared with e.g. those in
- https://arxiv.org/abs/0907.0859
-/
/-- The propagator
- - - - - -
-/
def propagator : FeynmanDiagram where
𝓱𝓔 := Fin 2
𝓔 := Fin 1
𝓔Label := ![0]
𝓱𝓔To𝓔 := ![0, 0]
𝓔Fiber := by decide
𝓥 := Fin 2
𝓥Label := ![0, 0]
𝓱𝓔To𝓥 := ![0, 1]
𝓥Fiber := by decide
instance : IsFiniteDiagram propagator where
𝓔Fintype := Fin.fintype 1
𝓔DecidableEq := instDecidableEqFin 1
𝓥Fintype := Fin.fintype 2
𝓥DecidableEq := instDecidableEqFin 2
𝓱𝓔Fintype := Fin.fintype 2
𝓱𝓔DecidableEq := instDecidableEqFin 2
lemma propagator_symmetryFactor : symmetryFactor propagator = 2 := by
decide
/-- The figure 8 Feynman diagram
_
/ \
/ \
\ /
\ /
\ /
/ \
/ \
\ /
\ __ / -/
@[simps!]
def figureEight : FeynmanDiagram where
𝓱𝓔 := Fin 4
𝓔 := Fin 2
𝓔Label := ![0, 0]
𝓱𝓔To𝓔 := ![0, 0, 1, 1]
𝓔Fiber := by decide
𝓥 := Fin 1
𝓥Label := ![1]
𝓱𝓔To𝓥 := ![0, 0, 0, 0]
𝓥Fiber := by decide
instance : IsFiniteDiagram figureEight where
𝓔Fintype := Fin.fintype 2
𝓔DecidableEq := instDecidableEqFin 2
𝓥Fintype := Fin.fintype 1
𝓥DecidableEq := instDecidableEqFin 1
𝓱𝓔Fintype := Fin.fintype 4
𝓱𝓔DecidableEq := instDecidableEqFin 4
lemma figureEight_connected : Connected figureEight := by
decide
lemma figureEight_symmetryFactor : symmetryFactor figureEight = 8 := by
decide
/-- The feynman diagram
_ _ _ _ _
/ \
/ \
- - - - - - - - - - - -
\ /
\ _ _ _ _ _/
-/
def diagram1 : FeynmanDiagram where
𝓱𝓔 := Fin 10
𝓔 := Fin 5
𝓔Label := ![0, 0, 0, 0, 0]
𝓱𝓔To𝓔 := ![0, 0, 1, 1, 2, 2, 3, 3, 4, 4]
𝓔Fiber := by decide
𝓥 := Fin 4
𝓥Label := ![0, 1, 1, 0]
𝓱𝓔To𝓥 := ![0, 1, 1, 2, 1, 2, 1, 2, 2, 3]
𝓥Fiber := by decide
/-- An example of a disconnected Feynman diagram. -/
def diagram2 : FeynmanDiagram where
𝓱𝓔 := Fin 14
𝓔 := Fin 7
𝓔Label := ![0, 0, 0, 0, 0, 0, 0]
𝓱𝓔To𝓔 := ![0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
𝓔Fiber := by decide
𝓥 := Fin 5
𝓥Label := ![0, 0, 1, 1, 1]
𝓱𝓔To𝓥 := ![0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4]
𝓥Fiber := by decide
instance : IsFiniteDiagram diagram2 where
𝓔Fintype := Fin.fintype _
𝓔DecidableEq := instDecidableEqFin _
𝓥Fintype := Fin.fintype _
𝓥DecidableEq := instDecidableEqFin _
𝓱𝓔Fintype := Fin.fintype _
𝓱𝓔DecidableEq := instDecidableEqFin _
lemma diagram2_not_connected : ¬ Connected diagram2 := by
decide
end examples
end FeynmanDiagram
end PhiFour