2024-04-18 10:50:21 -04:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
2024-06-25 07:06:32 -04:00
|
|
|
|
import HepLean.AnomalyCancellation.PureU1.Basic
|
2024-04-18 10:50:21 -04:00
|
|
|
|
/-!
|
|
|
|
|
# The Pure U(1) case with 2 fermions
|
|
|
|
|
|
|
|
|
|
We define an equivalence between `LinSols` and `Sols`.
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
universe v u
|
|
|
|
|
|
|
|
|
|
open Nat
|
|
|
|
|
open Finset
|
|
|
|
|
|
|
|
|
|
namespace PureU1
|
|
|
|
|
|
|
|
|
|
variable {n : ℕ}
|
|
|
|
|
|
|
|
|
|
namespace Two
|
|
|
|
|
|
|
|
|
|
/-- An equivalence between `LinSols` and `Sols`. -/
|
|
|
|
|
def equiv : (PureU1 2).LinSols ≃ (PureU1 2).Sols where
|
|
|
|
|
toFun S := ⟨⟨S, by intro i; simp at i; exact Fin.elim0 i⟩, by
|
|
|
|
|
have hLin := pureU1_linear S
|
|
|
|
|
simp at hLin
|
|
|
|
|
erw [accCube_explicit]
|
2024-04-18 10:50:59 -04:00
|
|
|
|
simp only [Fin.sum_univ_two, Fin.isValue]
|
2024-06-13 16:49:01 -04:00
|
|
|
|
rw [show S.val (0 : Fin 2) = - S.val (1 : Fin 2) from eq_neg_of_add_eq_zero_left hLin]
|
2024-04-18 10:50:21 -04:00
|
|
|
|
ring⟩
|
|
|
|
|
invFun S := S.1.1
|
|
|
|
|
left_inv S := rfl
|
|
|
|
|
right_inv S := rfl
|
|
|
|
|
|
|
|
|
|
end Two
|
|
|
|
|
|
|
|
|
|
end PureU1
|