PhysLean/HepLean/FlavorPhysics/CKMMatrix/StandardParameterization/Basic.lean

198 lines
8.6 KiB
Text
Raw Normal View History

2024-04-29 08:13:52 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
2024-07-12 16:39:44 -04:00
Released under Apache 2.0 license as described in the file LICENSE.
2024-04-29 08:13:52 -04:00
Authors: Joseph Tooby-Smith
-/
import HepLean.FlavorPhysics.CKMMatrix.Basic
import HepLean.FlavorPhysics.CKMMatrix.Rows
import HepLean.FlavorPhysics.CKMMatrix.Invariants
import Mathlib.Analysis.SpecialFunctions.Complex.Arg
2024-04-29 10:42:44 -04:00
/-!
# Standard parameterization for the CKM Matrix
2024-04-29 08:13:52 -04:00
2024-04-29 10:42:44 -04:00
This file defines the standard parameterization of CKM matrices in terms of
four real numbers `θ₁₂`, `θ₁₃`, `θ₂₃` and `δ₁₃`.
We will show that every CKM matrix can be written within this standard parameterization
in the file `FlavorPhysics.CKMMatrix.StandardParameters`.
-/
2024-04-29 08:13:52 -04:00
open Matrix Complex
open ComplexConjugate
open CKMMatrix
noncomputable section
2024-07-15 14:52:50 -04:00
/-- Given four reals `θ₁₂ θ₁₃ θ₂₃ δ₁₃` the standard parameterization of the CKM matrix
2024-04-29 10:42:44 -04:00
as a `3×3` complex matrix. -/
2024-07-12 11:23:02 -04:00
def standParamAsMatrix (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) : Matrix (Fin 3) (Fin 3) :=
2024-04-29 08:13:52 -04:00
![![Real.cos θ₁₂ * Real.cos θ₁₃, Real.sin θ₁₂ * Real.cos θ₁₃, Real.sin θ₁₃ * exp (-I * δ₁₃)],
![(-Real.sin θ₁₂ * Real.cos θ₂₃) - (Real.cos θ₁₂ * Real.sin θ₁₃ * Real.sin θ₂₃ * exp (I * δ₁₃)),
Real.cos θ₁₂ * Real.cos θ₂₃ - Real.sin θ₁₂ * Real.sin θ₁₃ * Real.sin θ₂₃ * exp (I * δ₁₃),
Real.sin θ₂₃ * Real.cos θ₁₃],
![Real.sin θ₁₂ * Real.sin θ₂₃ - Real.cos θ₁₂ * Real.sin θ₁₃ * Real.cos θ₂₃ * exp (I * δ₁₃),
(-Real.cos θ₁₂ * Real.sin θ₂₃) - (Real.sin θ₁₂ * Real.sin θ₁₃ * Real.cos θ₂₃ * exp (I * δ₁₃)),
Real.cos θ₂₃ * Real.cos θ₁₃]]
open CKMMatrix
2024-07-12 11:23:02 -04:00
lemma standParamAsMatrix_unitary (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) :
((standParamAsMatrix θ₁₂ θ₁₃ θ₂₃ δ₁₃)ᴴ * standParamAsMatrix θ₁₂ θ₁₃ θ₂₃ δ₁₃) = 1 := by
2024-04-29 08:13:52 -04:00
funext j i
2024-04-29 09:22:32 -04:00
simp only [standParamAsMatrix, neg_mul, Fin.isValue]
2024-04-29 08:13:52 -04:00
rw [mul_apply]
have h1 := exp_ne_zero (I * ↑δ₁₃)
fin_cases j <;> rw [Fin.sum_univ_three]
simp only [Fin.zero_eta, Fin.isValue, conjTranspose_apply, cons_val', cons_val_zero, empty_val',
cons_val_fin_one, star_mul', RCLike.star_def, conj_ofReal, cons_val_one, head_cons, star_sub,
star_neg, ← exp_conj, _root_.map_mul, conj_I, neg_mul, cons_val_two, tail_cons, head_fin_const]
simp [conj_ofReal]
rw [exp_neg ]
fin_cases i <;> simp
· ring_nf
field_simp
rw [sin_sq, sin_sq, sin_sq]
ring
· ring_nf
field_simp
rw [sin_sq, sin_sq]
ring
· ring_nf
field_simp
rw [sin_sq]
ring
simp only [Fin.mk_one, Fin.isValue, conjTranspose_apply, cons_val', cons_val_one, head_cons,
empty_val', cons_val_fin_one, cons_val_zero, star_mul', RCLike.star_def, conj_ofReal, star_sub,
← exp_conj, _root_.map_mul, conj_I, neg_mul, cons_val_two, tail_cons, head_fin_const, star_neg]
simp [conj_ofReal]
rw [exp_neg]
fin_cases i <;> simp
· ring_nf
field_simp
rw [sin_sq, sin_sq]
ring
· ring_nf
field_simp
rw [sin_sq, sin_sq, sin_sq]
ring
· ring_nf
field_simp
rw [sin_sq]
ring
simp only [Fin.reduceFinMk, Fin.isValue, conjTranspose_apply, cons_val', cons_val_two, tail_cons,
head_cons, empty_val', cons_val_fin_one, cons_val_zero, star_mul', RCLike.star_def, conj_ofReal,
← exp_conj, map_neg, _root_.map_mul, conj_I, neg_mul, neg_neg, cons_val_one, head_fin_const]
simp [conj_ofReal]
rw [exp_neg]
fin_cases i <;> simp
· ring_nf
rw [sin_sq]
ring
· ring_nf
rw [sin_sq]
ring
· ring_nf
field_simp
rw [sin_sq, sin_sq]
ring
2024-07-16 11:40:00 -04:00
/-- A CKM Matrix from four reals `θ₁₂`, `θ₁₃`, `θ₂₃`, and `δ₁₃`. This is the standard
2024-07-15 14:52:50 -04:00
parameterization of CKM matrices. -/
2024-04-29 09:22:32 -04:00
def standParam (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) : CKMMatrix :=
⟨standParamAsMatrix θ₁₂ θ₁₃ θ₂₃ δ₁₃, by
2024-04-29 08:13:52 -04:00
rw [mem_unitaryGroup_iff']
2024-04-29 09:22:32 -04:00
exact standParamAsMatrix_unitary θ₁₂ θ₁₃ θ₂₃ δ₁₃⟩
2024-04-29 08:13:52 -04:00
2024-04-29 09:22:32 -04:00
namespace standParam
lemma cross_product_t (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) :
[standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃]t =
(conj [standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃]u ×₃ conj [standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃]c) := by
2024-04-29 08:13:52 -04:00
have h1 := exp_ne_zero (I * ↑δ₁₃)
funext i
fin_cases i
2024-04-29 09:22:32 -04:00
· simp only [tRow, standParam, standParamAsMatrix, neg_mul, exp_neg,
2024-04-29 08:13:52 -04:00
Fin.isValue, cons_val', cons_val_zero, empty_val', cons_val_fin_one, cons_val_two, tail_cons,
head_fin_const, cons_val_one, head_cons, Fin.zero_eta, crossProduct, uRow, cRow,
LinearMap.mk₂_apply, Pi.conj_apply, _root_.map_mul, map_inv₀, ← exp_conj, conj_I, conj_ofReal,
inv_inv, map_sub, map_neg]
field_simp
ring_nf
rw [sin_sq]
ring
2024-04-29 09:22:32 -04:00
· simp only [tRow, standParam, standParamAsMatrix, neg_mul, exp_neg, Fin.isValue, cons_val',
2024-04-29 08:13:52 -04:00
cons_val_zero, empty_val', cons_val_fin_one, cons_val_two, tail_cons, head_fin_const,
cons_val_one, head_cons, Fin.mk_one, crossProduct, uRow, cRow, LinearMap.mk₂_apply,
Pi.conj_apply, _root_.map_mul, conj_ofReal, map_inv₀, ← exp_conj, conj_I, inv_inv, map_sub,
map_neg]
field_simp
ring_nf
rw [sin_sq]
ring
2024-04-29 09:22:32 -04:00
· simp only [tRow, standParam, standParamAsMatrix, neg_mul, exp_neg, Fin.isValue,
2024-04-29 08:13:52 -04:00
cons_val', cons_val_zero, empty_val', cons_val_fin_one, cons_val_two, tail_cons, head_fin_const,
cons_val_one, head_cons, Fin.reduceFinMk, crossProduct, uRow, cRow, LinearMap.mk₂_apply,
Pi.conj_apply, _root_.map_mul, conj_ofReal, map_inv₀, ← exp_conj, conj_I, inv_inv, map_sub,
map_neg]
field_simp
ring_nf
rw [sin_sq]
ring
2024-04-29 09:22:32 -04:00
lemma eq_rows (U : CKMMatrix) {θ₁₂ θ₁₃ θ₂₃ δ₁₃ : } (hu : [U]u = [standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃]u)
2024-07-12 11:23:02 -04:00
(hc : [U]c = [standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃]c) (hU : [U]t = conj [U]u ×₃ conj [U]c) :
2024-04-29 09:22:32 -04:00
U = standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃ := by
2024-04-29 08:13:52 -04:00
apply ext_Rows hu hc
2024-04-29 09:22:32 -04:00
rw [hU, cross_product_t, hu, hc]
2024-04-29 08:13:52 -04:00
2024-04-29 09:22:32 -04:00
lemma eq_exp_of_phases (θ₁₂ θ₁₃ θ₂₃ δ₁₃ δ₁₃' : ) (h : cexp (δ₁₃ * I) = cexp (δ₁₃' * I)) :
standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃ = standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃' := by
simp [standParam, standParamAsMatrix]
2024-04-29 08:13:52 -04:00
apply CKMMatrix_ext
2024-04-29 10:42:44 -04:00
simp only
2024-07-12 11:23:02 -04:00
rw [show exp (I * δ₁₃) = exp (I * δ₁₃') by rw [mul_comm, h, mul_comm]]
2024-04-29 08:13:52 -04:00
rw [show cexp (-(I * ↑δ₁₃)) = cexp (-(I * ↑δ₁₃')) by rw [exp_neg, exp_neg, mul_comm, h, mul_comm]]
2024-04-29 09:22:32 -04:00
open Invariant in
lemma VusVubVcdSq_eq (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) (h1 : 0 ≤ Real.sin θ₁₂)
2024-04-29 10:42:44 -04:00
(h2 : 0 ≤ Real.cos θ₁₃) (h3 : 0 ≤ Real.sin θ₂₃) (h4 : 0 ≤ Real.cos θ₁₂) :
2024-04-29 09:22:32 -04:00
VusVubVcdSq ⟦standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃⟧ =
2024-04-29 08:13:52 -04:00
Real.sin θ₁₂ ^ 2 * Real.cos θ₁₃ ^ 2 * Real.sin θ₁₃ ^ 2 * Real.sin θ₂₃ ^ 2 := by
2024-04-29 09:22:32 -04:00
simp only [VusVubVcdSq, VusAbs, VAbs, VAbs', Fin.isValue, standParam, standParamAsMatrix,
2024-04-29 08:13:52 -04:00
neg_mul, Quotient.lift_mk, cons_val', cons_val_one, head_cons,
empty_val', cons_val_fin_one, cons_val_zero, _root_.map_mul, VubAbs, cons_val_two, tail_cons,
VcbAbs, VudAbs, Complex.abs_ofReal]
by_cases hx : Real.cos θ₁₃ ≠ 0
· rw [Complex.abs_exp]
2024-04-29 10:42:44 -04:00
simp only [neg_re, mul_re, I_re, ofReal_re, zero_mul, I_im, ofReal_im, mul_zero, sub_self,
neg_zero, Real.exp_zero, mul_one, _root_.sq_abs]
2024-04-29 08:13:52 -04:00
rw [_root_.abs_of_nonneg h1, _root_.abs_of_nonneg h3, _root_.abs_of_nonneg h2,
_root_.abs_of_nonneg h4]
simp [sq]
ring_nf
nth_rewrite 2 [Real.sin_sq θ₁₂]
ring_nf
field_simp
ring
· simp at hx
rw [hx]
simp
2024-04-29 09:22:32 -04:00
open Invariant in
lemma mulExpδ₁₃_eq (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) (h1 : 0 ≤ Real.sin θ₁₂)
2024-07-12 11:23:02 -04:00
(h2 : 0 ≤ Real.cos θ₁₃) (h3 : 0 ≤ Real.sin θ₂₃) (h4 : 0 ≤ Real.cos θ₁₂) :
2024-04-29 09:22:32 -04:00
mulExpδ₁₃ ⟦standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃⟧ =
2024-07-12 11:23:02 -04:00
sin θ₁₂ * cos θ₁₃ ^ 2 * sin θ₂₃ * sin θ₁₃ * cos θ₁₂ * cos θ₂₃ * cexp (I * δ₁₃) := by
2024-04-29 09:22:32 -04:00
rw [mulExpδ₁₃, VusVubVcdSq_eq _ _ _ _ h1 h2 h3 h4 ]
simp only [jarlskog, standParam, standParamAsMatrix, neg_mul,
2024-04-29 08:13:52 -04:00
Quotient.lift_mk, jarlskogCKM, Fin.isValue, cons_val', cons_val_one, head_cons,
empty_val', cons_val_fin_one, cons_val_zero, cons_val_two, tail_cons, _root_.map_mul, ←
exp_conj, map_neg, conj_I, conj_ofReal, neg_neg, map_sub]
2024-04-29 10:42:44 -04:00
simp only [ofReal_sin, ofReal_cos, ofReal_mul, ofReal_pow]
2024-04-29 08:13:52 -04:00
ring_nf
rw [exp_neg]
have h1 : cexp (I * δ₁₃) ≠ 0 := exp_ne_zero _
field_simp
2024-04-29 09:22:32 -04:00
end standParam
2024-04-29 08:13:52 -04:00
end