PhysLean/HepLean/SpaceTime/LorentzVector/Complex/Metric.lean

193 lines
9.2 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzVector.Complex.Two
import HepLean.SpaceTime.MinkowskiMetric
import HepLean.SpaceTime.LorentzVector.Complex.Contraction
import HepLean.SpaceTime.LorentzVector.Complex.Unit
/-!
# Metric for complex Lorentz vectors
-/
noncomputable section
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open SpaceTime
open CategoryTheory.MonoidalCategory
namespace Lorentz
/-- The metric `ηᵃᵃ` as an element of `(complexContr ⊗ complexContr).V`. -/
def contrMetricVal : (complexContr ⊗ complexContr).V :=
contrContrToMatrix.symm ((@minkowskiMatrix 3).map ofReal)
/-- The expansion of `contrMetricVal` into basis vectors. -/
lemma contrMetricVal_expand_tmul : contrMetricVal =
complexContrBasis (Sum.inl 0) ⊗ₜ[] complexContrBasis (Sum.inl 0)
- complexContrBasis (Sum.inr 0) ⊗ₜ[] complexContrBasis (Sum.inr 0)
- complexContrBasis (Sum.inr 1) ⊗ₜ[] complexContrBasis (Sum.inr 1)
- complexContrBasis (Sum.inr 2) ⊗ₜ[] complexContrBasis (Sum.inr 2) := by
simp only [Action.instMonoidalCategory_tensorObj_V, contrMetricVal, Fin.isValue]
erw [contrContrToMatrix_symm_expand_tmul]
simp only [map_apply, ofReal_eq_coe, coe_smul, Fintype.sum_sum_type, Finset.univ_unique,
Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton, Fin.sum_univ_three, ne_eq, reduceCtorEq,
not_false_eq_true, minkowskiMatrix.off_diag_zero, zero_smul, add_zero, zero_add, Sum.inr.injEq,
zero_ne_one, Fin.reduceEq, one_ne_zero]
rw [minkowskiMatrix.inl_0_inl_0, minkowskiMatrix.inr_i_inr_i,
minkowskiMatrix.inr_i_inr_i, minkowskiMatrix.inr_i_inr_i]
simp only [Fin.isValue, one_smul, neg_smul]
rfl
/-- The metric `ηᵃᵃ` as a morphism `𝟙_ (Rep SL(2,)) ⟶ complexContr ⊗ complexContr`,
making its invariance under the action of `SL(2,)`. -/
def contrMetric : 𝟙_ (Rep SL(2,)) ⟶ complexContr ⊗ complexContr where
hom := {
toFun := fun a =>
let a' : := a
a' • contrMetricVal,
map_add' := fun x y => by
simp only [add_smul],
map_smul' := fun m x => by
simp only [smul_smul]
rfl}
comm M := by
ext x : 2
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
Function.comp_apply]
let x' : := x
change x' • contrMetricVal =
(TensorProduct.map (complexContr.ρ M) (complexContr.ρ M)) (x' • contrMetricVal)
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
apply congrArg
simp only [Action.instMonoidalCategory_tensorObj_V, contrMetricVal]
erw [contrContrToMatrix_ρ_symm]
apply congrArg
simp only [LorentzGroup.toComplex_mul_minkowskiMatrix_mul_transpose]
lemma contrMetric_apply_one : contrMetric.hom (1 : ) = contrMetricVal := by
change contrMetric.hom.toFun (1 : ) = contrMetricVal
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
contrMetric, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
/-- The metric `ηᵢᵢ` as an element of `(complexCo ⊗ complexCo).V`. -/
def coMetricVal : (complexCo ⊗ complexCo).V :=
coCoToMatrix.symm ((@minkowskiMatrix 3).map ofReal)
/-- The expansion of `coMetricVal` into basis vectors. -/
lemma coMetricVal_expand_tmul : coMetricVal =
complexCoBasis (Sum.inl 0) ⊗ₜ[] complexCoBasis (Sum.inl 0)
- complexCoBasis (Sum.inr 0) ⊗ₜ[] complexCoBasis (Sum.inr 0)
- complexCoBasis (Sum.inr 1) ⊗ₜ[] complexCoBasis (Sum.inr 1)
- complexCoBasis (Sum.inr 2) ⊗ₜ[] complexCoBasis (Sum.inr 2) := by
simp only [Action.instMonoidalCategory_tensorObj_V, coMetricVal, Fin.isValue]
erw [coCoToMatrix_symm_expand_tmul]
simp only [map_apply, ofReal_eq_coe, coe_smul, Fintype.sum_sum_type, Finset.univ_unique,
Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton, Fin.sum_univ_three, ne_eq, reduceCtorEq,
not_false_eq_true, minkowskiMatrix.off_diag_zero, zero_smul, add_zero, zero_add, Sum.inr.injEq,
zero_ne_one, Fin.reduceEq, one_ne_zero]
rw [minkowskiMatrix.inl_0_inl_0, minkowskiMatrix.inr_i_inr_i,
minkowskiMatrix.inr_i_inr_i, minkowskiMatrix.inr_i_inr_i]
simp only [Fin.isValue, one_smul, neg_smul]
rfl
/-- The metric `ηᵢᵢ` as a morphism `𝟙_ (Rep SL(2,)) ⟶ complexCo ⊗ complexCo`,
making its invariance under the action of `SL(2,)`. -/
def coMetric : 𝟙_ (Rep SL(2,)) ⟶ complexCo ⊗ complexCo where
hom := {
toFun := fun a =>
let a' : := a
a' • coMetricVal,
map_add' := fun x y => by
simp only [add_smul],
map_smul' := fun m x => by
simp only [smul_smul]
rfl}
comm M := by
ext x : 2
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
Function.comp_apply]
let x' : := x
change x' • coMetricVal =
(TensorProduct.map (complexCo.ρ M) (complexCo.ρ M)) (x' • coMetricVal)
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
apply congrArg
simp only [Action.instMonoidalCategory_tensorObj_V, coMetricVal]
erw [coCoToMatrix_ρ_symm]
apply congrArg
rw [LorentzGroup.toComplex_inv]
simp only [lorentzGroupIsGroup_inv, SL2C.toLorentzGroup_apply_coe,
LorentzGroup.toComplex_transpose_mul_minkowskiMatrix_mul_self]
lemma coMetric_apply_one : coMetric.hom (1 : ) = coMetricVal := by
change coMetric.hom.toFun (1 : ) = coMetricVal
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
coMetric, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
/-!
## Contraction of metrics
-/
lemma contrCoContraction_apply_metric : (β_ complexContr complexCo).hom.hom
((complexContr.V ◁ (λ_ complexCo.V).hom)
((complexContr.V ◁ contrCoContraction.hom ▷ complexCo.V)
((complexContr.V ◁ (α_ complexContr.V complexCo.V complexCo.V).inv)
((α_ complexContr.V complexContr.V (complexCo.V ⊗ complexCo.V)).hom
(contrMetric.hom (1 : ) ⊗ₜ[] coMetric.hom (1 : )))))) =
coContrUnit.hom (1 : ) := by
rw [contrMetric_apply_one, coMetric_apply_one]
rw [contrMetricVal_expand_tmul, coMetricVal_expand_tmul]
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Fin.isValue, tmul_sub, add_tmul, neg_tmul, map_sub, map_add, map_neg, tmul_sub, sub_tmul]
have h1 (x1 x2 : complexContr) (y1 y2 :complexCo) :
(complexContr.V ◁ (λ_ complexCo.V).hom)
((complexContr.V ◁ contrCoContraction.hom ▷ complexCo.V) (((complexContr.V ◁
(α_ complexContr.V complexCo.V complexCo.V).inv)
((α_ complexContr.V complexContr.V (complexCo.V ⊗ complexCo.V)).hom
((x1 ⊗ₜ[] x2) ⊗ₜ[] y1 ⊗ₜ[] y2)))))
= x1 ⊗ₜ[] ((λ_ complexCo.V).hom ((contrCoContraction.hom (x2 ⊗ₜ[] y1)) ⊗ₜ[] y2)) := rfl
repeat rw (config := { transparency := .instances }) [h1]
repeat rw [contrCoContraction_basis']
simp only [Fin.isValue, ↓reduceIte, ModuleCat.MonoidalCategory.leftUnitor_hom_apply, one_smul,
reduceCtorEq, zero_tmul, map_zero, tmul_zero, sub_zero, zero_sub, Sum.inr.injEq, one_ne_zero,
Fin.reduceEq, sub_neg_eq_add, zero_ne_one, sub_self]
erw [coContrUnit_apply_one, coContrUnitVal_expand_tmul]
rfl
lemma coContrContraction_apply_metric : (β_ complexCo complexContr).hom.hom
((complexCo.V ◁ (λ_ complexContr.V).hom)
((complexCo.V ◁ coContrContraction.hom ▷ complexContr.V)
((complexCo.V ◁ (α_ complexCo.V complexContr.V complexContr.V).inv)
((α_ complexCo.V complexCo.V (complexContr.V ⊗ complexContr.V)).hom
(coMetric.hom (1 : ) ⊗ₜ[] contrMetric.hom (1 : )))))) =
contrCoUnit.hom (1 : ) := by
rw [coMetric_apply_one, contrMetric_apply_one]
rw [coMetricVal_expand_tmul, contrMetricVal_expand_tmul]
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Fin.isValue, tmul_sub, add_tmul, neg_tmul, map_sub, map_add, map_neg, tmul_sub, sub_tmul]
have h1 (x1 x2 : complexCo) (y1 y2 :complexContr) :
(complexCo.V ◁ (λ_ complexContr.V).hom)
((complexCo.V ◁ coContrContraction.hom ▷ complexContr.V) (((complexCo.V ◁
(α_ complexCo.V complexContr.V complexContr.V).inv)
((α_ complexCo.V complexCo.V (complexContr.V ⊗ complexContr.V)).hom
((x1 ⊗ₜ[] x2) ⊗ₜ[] y1 ⊗ₜ[] y2)))))
= x1 ⊗ₜ[] ((λ_ complexContr.V).hom ((coContrContraction.hom (x2 ⊗ₜ[] y1)) ⊗ₜ[] y2)) := rfl
repeat rw (config := { transparency := .instances }) [h1]
repeat rw [coContrContraction_basis']
simp only [Fin.isValue, ↓reduceIte, ModuleCat.MonoidalCategory.leftUnitor_hom_apply, one_smul,
reduceCtorEq, zero_tmul, map_zero, tmul_zero, sub_zero, zero_sub, Sum.inr.injEq, one_ne_zero,
Fin.reduceEq, sub_neg_eq_add, zero_ne_one, sub_self]
erw [contrCoUnit_apply_one, contrCoUnitVal_expand_tmul]
rfl
end Lorentz
end