PhysLean/HepLean/SpaceTime/LorentzTensor/IndexNotation/Basic.lean

450 lines
14 KiB
Text
Raw Normal View History

2024-08-02 16:46:20 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
2024-08-02 16:52:04 -04:00
import Mathlib.Data.Set.Finite
import Mathlib.Data.Finset.Sort
2024-08-02 16:46:20 -04:00
/-!
# Index notation for a type
In this file we will define an index of a Lorentz tensor as a
string satisfying certain properties.
For example, the string `ᵘ¹²` is an index of a real Lorentz tensors.
The first character `ᵘ` specifies the color of the index, and the subsequent characters
`¹²` specify the id of the index.
Strings of indices e.g. `ᵘ¹²ᵤ₄₃`` are defined elsewhere.
-/
open Lean
open String
/-- The class defining index notation on a type `X`.
Normally `X` will be taken as the type of colors of a `TensorStructure`. -/
class IndexNotation (X : Type) where
/-- The list of characters describing the index notation e.g.
`{'ᵘ', 'ᵤ'}` for real tensors. -/
charList : Finset Char
/-- An equivalence between `X` (colors of indices) and `charList`.
This takes every color of index to its notation character. -/
notaEquiv : X ≃ charList
namespace IndexNotation
variable (X : Type) [IndexNotation X]
variable [Fintype X] [DecidableEq X]
/-!
## Lists of characters forming an index
Here we define `listCharIndex` and properties thereof.
-/
/-- The map taking a color to its notation character. -/
def nota {X : Type} [IndexNotation X] (x : X) : Char :=
(IndexNotation.notaEquiv).toFun x
/-- A character is a `notation character` if it is in `charList`. -/
def isNotationChar (c : Char) : Bool :=
if c ∈ charList X then true else false
/-- A character is a numeric superscript if it is e.g. `⁰`, `¹`, etc. -/
def isNumericSupscript (c : Char) : Bool :=
c = '¹' c = '²' c = '³' c = '⁴' c = '⁵' c = '⁶' c = '⁷' c = '⁸' c = '⁹' c = '⁰'
/-- Given a character `f` which is a notation character, this is true if `c`
is a subscript when `f` is a subscript or `c` is a superscript when `f` is a
superscript. -/
def IsIndexId (f : Char) (c : Char) : Bool :=
(isSubScriptAlnum f ∧ isNumericSubscript c)
(¬ isSubScriptAlnum f ∧ isNumericSupscript c)
/-- The proposition for a list of characters to be the tail of an index
e.g. `['¹', '⁷', ...]` -/
def listCharIndexTail (f : Char) (l : List Char) : Prop :=
l ≠ [] ∧ List.all l (fun c => IsIndexId f c)
instance : Decidable (listCharIndexTail f l) := instDecidableAnd
/-- The proposition for a list of characters to be the characters of an index
e.g. `['ᵘ', '¹', '⁷', ...]` -/
def listCharIndex (l : List Char) : Prop :=
if h : l = [] then True
else
let sfst := l.head h
if ¬ isNotationChar X sfst then False
else
listCharIndexTail sfst l.tail
/-- An auxillary rewrite lemma to prove that `listCharIndex` is decidable. -/
lemma listCharIndex_iff (l : List Char) : listCharIndex X l
↔ (if h : l = [] then True else
let sfst := l.head h
if ¬ isNotationChar X sfst then False
else listCharIndexTail sfst l.tail) := by
rw [listCharIndex]
instance : Decidable (listCharIndex X l) :=
@decidable_of_decidable_of_iff _ _
(@instDecidableDite _ _ _ _ _ <|
fun _ => @instDecidableDite _ _ _ _ _ <|
fun _ => instDecidableListCharIndexTail)
(listCharIndex_iff X l).symm
/-!
## The definition of an index and its properties
-/
/-- An index is a non-empty string satisfying the condtion `listCharIndex`,
e.g. `ᵘ¹²` or `ᵤ₄₃` etc. -/
def Index : Type := {s : String // listCharIndex X s.toList ∧ s.toList ≠ []}
namespace Index
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
/-- Creats an index from a non-empty list of characters satisfying `listCharIndex`. -/
def ofCharList (l : List Char) (h : listCharIndex X l ∧ l ≠ []) : Index X := ⟨l.asString, h⟩
instance : ToString (Index X) := ⟨fun i => i.val⟩
/-- Gets the first character in an index e.g. `ᵘ` as an element of `charList X`. -/
def head (s : Index X) : charList X :=
⟨s.val.toList.head (s.prop.2), by
have h := s.prop.1
have h2 := s.prop.2
simp [listCharIndex] at h
simp_all only [toList, ne_eq, Bool.not_eq_true, ↓reduceDIte]
simpa [isNotationChar] using h.1⟩
/-- The color associated to an index. -/
def toColor (s : Index X) : X := (IndexNotation.notaEquiv).invFun s.head
/-- A map from super and subscript numerical characters to the natural numbers,
returning `0` on all other characters. -/
def charToNat (c : Char) : Nat :=
match c with
| '₀' => 0
| '₁' => 1
| '₂' => 2
| '₃' => 3
| '₄' => 4
| '₅' => 5
| '₆' => 6
| '₇' => 7
| '₈' => 8
| '₉' => 9
| '⁰' => 0
| '¹' => 1
| '²' => 2
| '³' => 3
| '⁴' => 4
| '⁵' => 5
| '⁶' => 6
| '⁷' => 7
| '⁸' => 8
| '⁹' => 9
| _ => 0
/-- The numerical characters associated with an index. -/
def tail (s : Index X) : List Char := s.val.toList.tail
/-- The natural numbers assocaited with an index. -/
def tailNat (s : Index X) : List Nat := s.tail.map charToNat
/-- The id of an index, as a natural number. -/
def id (s : Index X) : Nat := s.tailNat.foldl (fun a b => 10 * a + b) 0
end Index
/-!
## List of indices
-/
/-- The type of lists of indices. -/
def IndexList : Type := List (Index X)
namespace IndexList
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
variable (l : IndexList X)
/-- The number of indices in an index list. -/
def numIndices : Nat := l.length
/-- The map of from `Fin s.numIndices` into colors associated to an index list. -/
def colorMap : Fin l.numIndices → X :=
fun i => (l.get i).toColor
/-- The map of from `Fin s.numIndices` into the natural numbers associated to an index list. -/
def idMap : Fin l.numIndices → Nat :=
fun i => (l.get i).id
/-- Given a list of indices a subset of `Fin l.numIndices × Index X`
of pairs of positions in `l` and the corresponding item in `l`. -/
def toPosSet (l : IndexList X) : Set (Fin l.numIndices × Index X) :=
{(i, l.get i) | i : Fin l.numIndices}
/-- Equivalence between `toPosSet` and `Fin l.numIndices`. -/
def toPosSetEquiv (l : IndexList X) : l.toPosSet ≃ Fin l.numIndices where
toFun := fun x => x.1.1
invFun := fun x => ⟨(x, l.get x), by simp [toPosSet]⟩
left_inv x := by
have hx := x.prop
simp [toPosSet] at hx
simp only [List.get_eq_getElem]
obtain ⟨i, hi⟩ := hx
have hi2 : i = x.1.1 := by
obtain ⟨val, property⟩ := x
obtain ⟨fst, snd⟩ := val
simp_all only [Prod.mk.injEq]
subst hi2
simp_all only [Subtype.coe_eta]
right_inv := by
intro x
rfl
lemma toPosSet_is_finite (l : IndexList X) : l.toPosSet.Finite :=
Finite.intro l.toPosSetEquiv
instance : Fintype l.toPosSet where
elems := Finset.map l.toPosSetEquiv.symm.toEmbedding Finset.univ
complete := by
intro x
simp_all only [Finset.mem_map_equiv, Equiv.symm_symm, Finset.mem_univ]
/-- Given a list of indices a finite set of `Fin l.numIndices × Index X`
of pairs of positions in `l` and the corresponding item in `l`. -/
def toPosFinset (l : IndexList X) : Finset (Fin l.numIndices × Index X) :=
l.toPosSet.toFinset
instance : HAppend (IndexList X) (IndexList X) (IndexList X) :=
@instHAppendOfAppend (List (Index X)) List.instAppend
/-- The construction of a list of indices from a map
from `Fin n` to `Index X`. -/
def fromFinMap {n : } (f : Fin n → Index X) : IndexList X :=
(Fin.list n).map f
@[simp]
lemma fromFinMap_numIndices {n : } (f : Fin n → Index X) :
(fromFinMap f).numIndices = n := by
simp [fromFinMap, numIndices]
/-!
## Contracted and non-contracting indices
-/
/-- The proposition on a element (or really index of element) of a index list
`s` which is ture iff does not share an id with any other element.
This tells us that it should not be contracted with any other element. -/
def NoContr (i : Fin l.length) : Prop :=
∀ j, i ≠ j → l.idMap i ≠ l.idMap j
instance (i : Fin l.length) : Decidable (l.NoContr i) :=
Fintype.decidableForallFintype
/-- The finset of indices of an index list corresponding to elements which do not contract. -/
def noContrFinset : Finset (Fin l.length) :=
Finset.univ.filter l.NoContr
/-- An eqiuvalence between the subtype of indices of a index list `l` which do not contract and
`Fin l.noContrFinset.card`. -/
def noContrSubtypeEquiv : {i : Fin l.length // l.NoContr i} ≃ Fin l.noContrFinset.card :=
(Equiv.subtypeEquivRight (fun x => by simp [noContrFinset])).trans
(Finset.orderIsoOfFin l.noContrFinset rfl).toEquiv.symm
@[simp]
lemma idMap_noContrSubtypeEquiv_neq (i j : Fin l.noContrFinset.card) (h : i ≠ j) :
l.idMap (l.noContrSubtypeEquiv.symm i).1 ≠ l.idMap (l.noContrSubtypeEquiv.symm j).1 := by
have hi := ((l.noContrSubtypeEquiv).symm i).2
simp [NoContr] at hi
have hj := hi ((l.noContrSubtypeEquiv).symm j)
apply hj
rw [@SetCoe.ext_iff]
erw [Equiv.apply_eq_iff_eq]
exact h
/-- The subtype of indices `l` which do contract. -/
def contrSubtype : Type := {i : Fin l.length // ¬ l.NoContr i}
instance : Fintype l.contrSubtype :=
Subtype.fintype fun x => ¬ l.NoContr x
instance : DecidableEq l.contrSubtype :=
Subtype.instDecidableEq
/-!
## Getting the index which contracts with a given index
-/
/-- Given a `i : l.contrSubtype` the proposition on a `j` in `Fin s.length` for
it to be an index of `s` contracting with `i`. -/
def getDualProp (i : l.contrSubtype) (j : Fin l.length) : Prop :=
i.1 ≠ j ∧ l.idMap i.1 = l.idMap j
instance (i : l.contrSubtype) (j : Fin l.length) :
Decidable (l.getDualProp i j) :=
instDecidableAnd
/-- Given a `i : l.contrSubtype` the index of `s` contracting with `i`. -/
def getDualFin (i : l.contrSubtype) : Fin l.length :=
(Fin.find (l.getDualProp i)).get (by simpa [NoContr, Fin.isSome_find_iff] using i.prop)
lemma some_getDualFin_eq_find (i : l.contrSubtype) :
Fin.find (l.getDualProp i) = some (l.getDualFin i) := by
simp [getDualFin]
lemma getDualFin_not_NoContr (i : l.contrSubtype) : ¬ l.NoContr (l.getDualFin i) := by
have h := l.some_getDualFin_eq_find i
rw [Fin.find_eq_some_iff] at h
simp [NoContr]
exact ⟨i.1, And.intro (fun a => h.1.1 a.symm) h.1.2.symm⟩
/-- The dual index of an element of `𝓒.contrSubtype s`, that is the index
contracting with it. -/
def getDual (i : l.contrSubtype) : l.contrSubtype :=
⟨l.getDualFin i, l.getDualFin_not_NoContr i⟩
lemma getDual_id (i : l.contrSubtype) : l.idMap i.1 = l.idMap (l.getDual i).1 := by
simp [getDual]
have h1 := l.some_getDualFin_eq_find i
rw [Fin.find_eq_some_iff] at h1
simp only [getDualProp, ne_eq, and_imp] at h1
exact h1.1.2
lemma getDual_neq_self (i : l.contrSubtype) : i ≠ l.getDual i := by
have h1 := l.some_getDualFin_eq_find i
rw [Fin.find_eq_some_iff] at h1
exact ne_of_apply_ne Subtype.val h1.1.1
/-!
## Index lists with no contracting indices
-/
/-- The proposition on a `IndexList` for it to have no contracting
indices. -/
def HasNoContr : Prop := ∀ i, l.NoContr i
2024-08-05 11:00:42 -04:00
lemma contrSubtype_is_empty_of_hasNoContr (h : l.HasNoContr) : IsEmpty l.contrSubtype := by
2024-08-02 16:46:20 -04:00
rw [_root_.isEmpty_iff]
intro a
exact h a.1 a.1 (fun _ => a.2 (h a.1)) rfl
2024-08-05 11:00:42 -04:00
lemma hasNoContr_id_inj (h : l.HasNoContr) : Function.Injective l.idMap := fun i j => by
simpa using (h i j).mt
lemma hasNoContr_color_eq_of_id_eq (h : l.HasNoContr) (i j : Fin l.length) :
l.idMap i = l.idMap j → l.colorMap i = l.colorMap j := by
intro h1
apply l.hasNoContr_id_inj h at h1
rw [h1]
2024-08-02 16:46:20 -04:00
/-!
## The contracted index list
-/
/-- The index list of those indices of `l` which do not contract. -/
def contrIndexList : IndexList X :=
IndexList.fromFinMap (fun i => l.get (l.noContrSubtypeEquiv.symm i))
@[simp]
lemma contrIndexList_numIndices : l.contrIndexList.numIndices = l.noContrFinset.card := by
simp [contrIndexList]
@[simp]
lemma contrIndexList_idMap_apply (i : Fin l.contrIndexList.numIndices) :
l.contrIndexList.idMap i =
l.idMap (l.noContrSubtypeEquiv.symm (Fin.cast (by simp) i)).1 := by
simp [contrIndexList, IndexList.fromFinMap, IndexList.idMap]
rfl
lemma contrIndexList_hasNoContr : HasNoContr l.contrIndexList := by
intro i
simp [NoContr]
intro j h
refine l.idMap_noContrSubtypeEquiv_neq _ _ ?_
rw [@Fin.ne_iff_vne]
simp only [Fin.coe_cast, ne_eq]
exact Fin.val_ne_of_ne h
2024-08-05 11:00:42 -04:00
/-- Contracting indices on a index list that has no contractions does nothing. -/
@[simp]
lemma contrIndexList_of_hasNoContr (h : HasNoContr l) : l.contrIndexList = l := by
simp only [contrIndexList, List.get_eq_getElem]
have hn : (@Finset.univ (Fin (List.length l)) (Fin.fintype (List.length l))).card =
(Finset.filter l.NoContr Finset.univ).card := by
rw [Finset.filter_true_of_mem (fun a _ => h a)]
have hx : (Finset.filter l.NoContr Finset.univ).card = (List.length l) := by
rw [← hn]
exact Finset.card_fin (List.length l)
apply List.ext_get
simpa [fromFinMap, noContrFinset] using hx
intro n h1 h2
simp only [noContrFinset, noContrSubtypeEquiv, OrderIso.toEquiv_symm, Equiv.symm_trans_apply,
RelIso.coe_fn_toEquiv, Equiv.subtypeEquivRight_symm_apply_coe, fromFinMap, List.get_eq_getElem,
OrderIso.symm_symm, Finset.coe_orderIsoOfFin_apply, List.getElem_map, Fin.getElem_list,
Fin.cast_mk]
simp only [Finset.filter_true_of_mem (fun a _ => h a)]
congr
rw [(Finset.orderEmbOfFin_unique' _
(fun x => Finset.mem_univ ((Fin.castOrderIso hx).toOrderEmbedding x))).symm]
rfl
/-- Applying contrIndexlist is equivalent to applying it once. -/
@[simp]
lemma contrIndexList_contrIndexList : l.contrIndexList.contrIndexList = l.contrIndexList :=
l.contrIndexList.contrIndexList_of_hasNoContr (l.contrIndexList_hasNoContr)
2024-08-02 16:46:20 -04:00
/-!
## Pairs of contracting indices
-/
/-- The set of contracting ordered pairs of indices. -/
def contrPairSet : Set (l.contrSubtype × l.contrSubtype) :=
{p | p.1.1 < p.2.1 ∧ l.idMap p.1.1 = l.idMap p.2.1}
2024-08-05 11:00:42 -04:00
instance : DecidablePred fun x => x ∈ l.contrPairSet := fun _ =>
And.decidable
instance : Fintype l.contrPairSet := setFintype _
2024-08-02 16:46:20 -04:00
lemma getDual_lt_self_mem_contrPairSet {i : l.contrSubtype}
(h : (l.getDual i).1 < i.1) : (l.getDual i, i) ∈ l.contrPairSet :=
And.intro h (l.getDual_id i).symm
lemma getDual_not_lt_self_mem_contrPairSet {i : l.contrSubtype}
(h : ¬ (l.getDual i).1 < i.1) : (i, l.getDual i) ∈ l.contrPairSet := by
apply And.intro
have h1 := l.getDual_neq_self i
simp only [Subtype.coe_lt_coe, gt_iff_lt]
simp at h
exact lt_of_le_of_ne h h1
simp only
exact l.getDual_id i
end IndexList
end IndexNotation