2024-10-15 13:19:46 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
|
|
|
|
import Mathlib.Data.Complex.Exponential
|
|
|
|
|
import Mathlib.Analysis.InnerProductSpace.PiL2
|
|
|
|
|
import HepLean.SpaceTime.SL2C.Basic
|
|
|
|
|
import HepLean.SpaceTime.LorentzVector.Modules
|
|
|
|
|
import HepLean.Meta.Informal
|
|
|
|
|
import Mathlib.RepresentationTheory.Rep
|
2024-10-16 10:39:11 +00:00
|
|
|
|
import HepLean.SpaceTime.PauliMatrices.SelfAdjoint
|
2024-10-15 13:19:46 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
# Complex Lorentz vectors
|
|
|
|
|
|
|
|
|
|
We define complex Lorentz vectors in 4d space-time as representations of SL(2, C).
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
noncomputable section
|
|
|
|
|
|
|
|
|
|
open Matrix
|
|
|
|
|
open MatrixGroups
|
|
|
|
|
open Complex
|
|
|
|
|
open TensorProduct
|
|
|
|
|
open SpaceTime
|
|
|
|
|
|
|
|
|
|
namespace Lorentz
|
|
|
|
|
|
|
|
|
|
/-- The representation of `SL(2, ℂ)` on complex vectors corresponding to contravariant
|
|
|
|
|
Lorentz vectors. In index notation these have an up index `ψⁱ`. -/
|
|
|
|
|
def complexContr : Rep ℂ SL(2, ℂ) := Rep.of ContrℂModule.SL2CRep
|
|
|
|
|
|
|
|
|
|
/-- The representation of `SL(2, ℂ)` on complex vectors corresponding to contravariant
|
|
|
|
|
Lorentz vectors. In index notation these have a down index `ψⁱ`. -/
|
|
|
|
|
def complexCo : Rep ℂ SL(2, ℂ) := Rep.of CoℂModule.SL2CRep
|
|
|
|
|
|
|
|
|
|
/-- The standard basis of complex contravariant Lorentz vectors. -/
|
|
|
|
|
def complexContrBasis : Basis (Fin 1 ⊕ Fin 3) ℂ complexContr := Basis.ofEquivFun
|
|
|
|
|
(Equiv.linearEquiv ℂ ContrℂModule.toFin13ℂFun)
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma complexContrBasis_ρ_apply (M : SL(2,ℂ)) (i j : Fin 1 ⊕ Fin 3) :
|
|
|
|
|
(LinearMap.toMatrix complexContrBasis complexContrBasis) (complexContr.ρ M) i j =
|
|
|
|
|
(LorentzGroup.toComplex (SL2C.toLorentzGroup M)) i j := by
|
|
|
|
|
rw [LinearMap.toMatrix_apply]
|
|
|
|
|
simp only [complexContrBasis, Basis.coe_ofEquivFun, Basis.ofEquivFun_repr_apply, transpose_apply]
|
|
|
|
|
change (((LorentzGroup.toComplex (SL2C.toLorentzGroup M))) *ᵥ (Pi.single j 1)) i = _
|
|
|
|
|
simp only [mulVec_single, transpose_apply, mul_one]
|
|
|
|
|
|
2024-10-16 10:39:11 +00:00
|
|
|
|
lemma complexContrBasis_ρ_val (M : SL(2,ℂ)) (v : complexContr) :
|
|
|
|
|
((complexContr.ρ M) v).val =
|
|
|
|
|
LorentzGroup.toComplex (SL2C.toLorentzGroup M) *ᵥ v.val := by
|
|
|
|
|
rfl
|
|
|
|
|
|
2024-10-15 13:19:46 +00:00
|
|
|
|
/-- The standard basis of complex covariant Lorentz vectors. -/
|
|
|
|
|
def complexCoBasis : Basis (Fin 1 ⊕ Fin 3) ℂ complexCo := Basis.ofEquivFun
|
|
|
|
|
(Equiv.linearEquiv ℂ CoℂModule.toFin13ℂFun)
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma complexCoBasis_ρ_apply (M : SL(2,ℂ)) (i j : Fin 1 ⊕ Fin 3) :
|
|
|
|
|
(LinearMap.toMatrix complexCoBasis complexCoBasis) (complexCo.ρ M) i j =
|
|
|
|
|
(LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ᵀ i j := by
|
|
|
|
|
rw [LinearMap.toMatrix_apply]
|
|
|
|
|
simp only [complexCoBasis, Basis.coe_ofEquivFun, Basis.ofEquivFun_repr_apply, transpose_apply]
|
|
|
|
|
change ((LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ᵀ *ᵥ (Pi.single j 1)) i = _
|
|
|
|
|
simp only [mulVec_single, transpose_apply, mul_one]
|
|
|
|
|
|
2024-10-16 10:39:11 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Relation to real
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
2024-10-16 10:57:46 +00:00
|
|
|
|
/-- The semilinear map including real Lorentz vectors into complex contravariant
|
|
|
|
|
lorentz vectors. -/
|
2024-10-16 10:39:11 +00:00
|
|
|
|
def inclCongrRealLorentz : LorentzVector 3 →ₛₗ[Complex.ofReal] complexContr where
|
|
|
|
|
toFun v := {val := ofReal ∘ v}
|
|
|
|
|
map_add' x y := by
|
|
|
|
|
apply Lorentz.ContrℂModule.ext
|
|
|
|
|
rw [Lorentz.ContrℂModule.val_add]
|
|
|
|
|
funext i
|
|
|
|
|
simp only [Function.comp_apply, ofReal_eq_coe, Pi.add_apply]
|
|
|
|
|
change ofReal (x i + y i) = _
|
|
|
|
|
simp only [ofReal_eq_coe, ofReal_add]
|
|
|
|
|
map_smul' c x := by
|
|
|
|
|
apply Lorentz.ContrℂModule.ext
|
|
|
|
|
rw [Lorentz.ContrℂModule.val_smul]
|
|
|
|
|
funext i
|
|
|
|
|
simp only [Function.comp_apply, ofReal_eq_coe, Pi.smul_apply]
|
|
|
|
|
change ofReal (c • x i) = _
|
|
|
|
|
simp only [smul_eq_mul, ofReal_eq_coe, ofReal_mul]
|
|
|
|
|
|
|
|
|
|
lemma inclCongrRealLorentz_val (v : LorentzVector 3) :
|
|
|
|
|
(inclCongrRealLorentz v).val = ofReal ∘ v := rfl
|
|
|
|
|
|
|
|
|
|
lemma complexContrBasis_of_real (i : Fin 1 ⊕ Fin 3) :
|
|
|
|
|
(complexContrBasis i) = inclCongrRealLorentz (LorentzVector.stdBasis i) := by
|
|
|
|
|
apply Lorentz.ContrℂModule.ext
|
2024-10-16 11:09:52 +00:00
|
|
|
|
simp only [complexContrBasis, Basis.coe_ofEquivFun, inclCongrRealLorentz, LorentzVector.stdBasis,
|
|
|
|
|
LinearMap.coe_mk, AddHom.coe_mk]
|
2024-10-16 10:39:11 +00:00
|
|
|
|
ext j
|
2024-10-16 10:57:46 +00:00
|
|
|
|
simp only [Function.comp_apply, ofReal_eq_coe]
|
2024-10-16 10:39:11 +00:00
|
|
|
|
erw [Pi.basisFun_apply]
|
|
|
|
|
change (Pi.single i 1) j = _
|
|
|
|
|
exact Eq.symm (Pi.apply_single (fun _ => ofReal') (congrFun rfl) i 1 j)
|
|
|
|
|
|
|
|
|
|
lemma inclCongrRealLorentz_ρ (M : SL(2, ℂ)) (v : LorentzVector 3) :
|
|
|
|
|
(complexContr.ρ M) (inclCongrRealLorentz v) =
|
|
|
|
|
inclCongrRealLorentz (SL2C.repLorentzVector M v) := by
|
|
|
|
|
apply Lorentz.ContrℂModule.ext
|
|
|
|
|
rw [complexContrBasis_ρ_val, inclCongrRealLorentz_val, inclCongrRealLorentz_val]
|
|
|
|
|
rw [LorentzGroup.toComplex_mulVec_ofReal]
|
|
|
|
|
apply congrArg
|
2024-10-16 10:57:46 +00:00
|
|
|
|
simp only [SL2C.toLorentzGroup_apply_coe]
|
2024-10-16 10:39:11 +00:00
|
|
|
|
rw [SL2C.repLorentzVector_apply_eq_mulVec]
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
lemma SL2CRep_ρ_basis (M : SL(2, ℂ)) (i : Fin 1 ⊕ Fin 3) :
|
|
|
|
|
(complexContr.ρ M) (complexContrBasis i) =
|
|
|
|
|
∑ j, (SL2C.toLorentzGroup M).1 j i •
|
|
|
|
|
complexContrBasis j := by
|
|
|
|
|
rw [complexContrBasis_of_real, inclCongrRealLorentz_ρ, SL2C.repLorentzVector_stdBasis, map_sum]
|
|
|
|
|
apply congrArg
|
|
|
|
|
funext j
|
|
|
|
|
simp only [LinearMap.map_smulₛₗ, ofReal_eq_coe, coe_smul]
|
|
|
|
|
rw [complexContrBasis_of_real]
|
|
|
|
|
|
2024-10-15 13:19:46 +00:00
|
|
|
|
end Lorentz
|
|
|
|
|
end
|