PhysLean/HepLean/SpaceTime/LorentzTensor/MulActionTensor.lean

222 lines
7.4 KiB
Text
Raw Normal View History

2024-07-29 08:38:01 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
2024-07-29 16:54:59 -04:00
import HepLean.SpaceTime.LorentzTensor.Contractions
2024-07-29 08:38:01 -04:00
import Mathlib.RepresentationTheory.Basic
/-!
2024-07-30 07:51:07 -04:00
# Group actions on tensor structures
2024-07-29 08:38:01 -04:00
-/
noncomputable section
open TensorProduct
variable {R : Type} [CommSemiring R]
/-! TODO: Add preservation of the unit, and the metric. -/
2024-07-30 07:51:07 -04:00
class MulActionTensor (G : Type) [Monoid G] (𝓣 : TensorStructure R) where
2024-07-29 08:38:01 -04:00
/-- For each color `μ` a representation of `G` on `ColorModule μ`. -/
2024-07-30 07:51:07 -04:00
repColorModule : (μ : 𝓣.Color) → Representation R G (𝓣.ColorModule μ)
2024-07-29 08:38:01 -04:00
/-- The contraction of a vector with its dual is invariant under the group action. -/
2024-07-30 07:51:07 -04:00
contrDual_inv : ∀ μ g, 𝓣.contrDual μ ∘ₗ
TensorProduct.map (repColorModule μ g) (repColorModule (𝓣.τ μ) g) = 𝓣.contrDual μ
namespace MulActionTensor
variable {G H : Type} [Group G] [Group H]
variable (𝓣 : TensorStructure R) [MulActionTensor G 𝓣]
variable {d : } {X Y Y' Z : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z]
{cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
/-!
# Instances of `MulActionTensor`
2024-07-29 08:38:01 -04:00
2024-07-30 07:51:07 -04:00
-/
def compHom (f : H →* G) : MulActionTensor H 𝓣 where
repColorModule μ := MonoidHom.comp (repColorModule μ) f
contrDual_inv μ h := by
simp only [MonoidHom.coe_comp, Function.comp_apply]
rw [contrDual_inv]
def trivial : MulActionTensor G 𝓣 where
repColorModule μ := Representation.trivial R
contrDual_inv μ g := by
simp only [Representation.trivial, MonoidHom.one_apply, TensorProduct.map_one]
rfl
end MulActionTensor
namespace TensorStructure
2024-07-29 08:38:01 -04:00
open TensorStructure
2024-07-30 07:51:07 -04:00
open MulActionTensor
2024-07-29 08:38:01 -04:00
variable {G : Type} [Group G]
2024-07-30 07:51:07 -04:00
variable (𝓣 : TensorStructure R) [MulActionTensor G 𝓣]
2024-07-29 08:38:01 -04:00
variable {d : } {X Y Y' Z : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z]
{cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
2024-07-30 07:51:07 -04:00
/-!
## Representation of tensor products
-/
2024-07-29 08:38:01 -04:00
/-- The representation of the group `G` on the vector space of tensors. -/
def rep : Representation R G (𝓣.Tensor cX) where
2024-07-30 07:51:07 -04:00
toFun g := PiTensorProduct.map (fun x => repColorModule (cX x) g)
2024-07-29 08:38:01 -04:00
map_one' := by
simp_all only [_root_.map_one, PiTensorProduct.map_one]
map_mul' g g' := by
simp_all only [_root_.map_mul]
exact PiTensorProduct.map_mul _ _
local infixl:78 " • " => 𝓣.rep
lemma repColorModule_colorModuleCast_apply (h : μ = ν) (g : G) (x : 𝓣.ColorModule μ) :
2024-07-30 07:51:07 -04:00
(repColorModule ν g) (𝓣.colorModuleCast h x) =
(𝓣.colorModuleCast h) (repColorModule μ g x) := by
2024-07-29 08:38:01 -04:00
subst h
simp [colorModuleCast]
@[simp]
lemma repColorModule_colorModuleCast (h : μ = ν) (g : G) :
2024-07-30 07:51:07 -04:00
(repColorModule ν g) ∘ₗ (𝓣.colorModuleCast h).toLinearMap =
(𝓣.colorModuleCast h).toLinearMap ∘ₗ (repColorModule μ g) := by
2024-07-29 08:38:01 -04:00
apply LinearMap.ext
intro x
simp [repColorModule_colorModuleCast_apply]
@[simp]
lemma rep_mapIso (e : X ≃ Y) (h : cX = cY ∘ e) (g : G) :
(𝓣.rep g) ∘ₗ (𝓣.mapIso e h).toLinearMap = (𝓣.mapIso e h).toLinearMap ∘ₗ 𝓣.rep g := by
apply PiTensorProduct.ext
apply MultilinearMap.ext
intro x
simp only [LinearMap.compMultilinearMap_apply, LinearMap.coe_comp, LinearEquiv.coe_coe,
Function.comp_apply]
erw [mapIso_tprod]
simp [rep, repColorModule_colorModuleCast_apply]
2024-07-30 07:51:07 -04:00
change (PiTensorProduct.map fun x => (repColorModule (cY x)) g)
2024-07-29 08:38:01 -04:00
((PiTensorProduct.tprod R) fun i => (𝓣.colorModuleCast _) (x (e.symm i))) =
(𝓣.mapIso e h) ((PiTensorProduct.map _) ((PiTensorProduct.tprod R) x))
rw [PiTensorProduct.map_tprod, PiTensorProduct.map_tprod, mapIso_tprod]
apply congrArg
funext i
subst h
simp [repColorModule_colorModuleCast_apply]
@[simp]
lemma rep_mapIso_apply (e : X ≃ Y) (h : cX = cY ∘ e) (g : G) (x : 𝓣.Tensor cX) :
g • (𝓣.mapIso e h x) = (𝓣.mapIso e h) (g • x) := by
trans ((𝓣.rep g) ∘ₗ (𝓣.mapIso e h).toLinearMap) x
rfl
simp
@[simp]
lemma rep_tprod (g : G) (f : (i : X) → 𝓣.ColorModule (cX i)) :
g • (PiTensorProduct.tprod R f) = PiTensorProduct.tprod R (fun x =>
2024-07-30 07:51:07 -04:00
repColorModule (cX x) g (f x)) := by
2024-07-29 08:38:01 -04:00
simp [rep]
change (PiTensorProduct.map _) ((PiTensorProduct.tprod R) f) = _
rw [PiTensorProduct.map_tprod]
/-!
## Group acting on tensor products
-/
lemma rep_tensoratorEquiv (g : G) :
(𝓣.tensoratorEquiv cX cY) ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g)) = 𝓣.rep g ∘ₗ
(𝓣.tensoratorEquiv cX cY).toLinearMap := by
apply tensorProd_piTensorProd_ext
intro p q
simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, map_tmul, rep_tprod,
tensoratorEquiv_tmul_tprod]
apply congrArg
funext x
match x with
| Sum.inl x => rfl
| Sum.inr x => rfl
lemma rep_tensoratorEquiv_apply (g : G) (x : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY) :
(𝓣.tensoratorEquiv cX cY) ((TensorProduct.map (𝓣.rep g) (𝓣.rep g)) x)
= (𝓣.rep g) ((𝓣.tensoratorEquiv cX cY) x) := by
trans ((𝓣.tensoratorEquiv cX cY) ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g))) x
rfl
rw [rep_tensoratorEquiv]
rfl
lemma rep_tensoratorEquiv_tmul (g : G) (x : 𝓣.Tensor cX) (y : 𝓣.Tensor cY) :
(𝓣.tensoratorEquiv cX cY) ((g • x) ⊗ₜ[R] (g • y)) =
g • ((𝓣.tensoratorEquiv cX cY) (x ⊗ₜ[R] y)) := by
nth_rewrite 1 [← rep_tensoratorEquiv_apply]
rfl
/-!
## Group acting on contraction
-/
@[simp]
lemma contrAll_rep {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e) (g : G) :
𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g)) = 𝓣.contrAll e h := by
apply TensorProduct.ext'
refine fun x ↦ PiTensorProduct.induction_on' x ?_ (by
intro a b hx hy y
simp [map_add, add_tmul, hx, hy])
intro rx fx
refine fun y ↦ PiTensorProduct.induction_on' y ?_ (by
intro a b hx hy
simp at hx hy
simp [map_add, tmul_add, hx, hy])
intro ry fy
simp [contrAll, TensorProduct.smul_tmul]
apply congrArg
apply congrArg
simp [contrAll']
apply congrArg
simp [pairProd]
change (PiTensorProduct.map _) ((PiTensorProduct.map₂ _ _) _) =
(PiTensorProduct.map _) ((PiTensorProduct.map₂ _ _) _)
rw [PiTensorProduct.map₂_tprod_tprod, PiTensorProduct.map₂_tprod_tprod, PiTensorProduct.map_tprod,
PiTensorProduct.map_tprod]
simp only [mk_apply]
apply congrArg
funext x
rw [← repColorModule_colorModuleCast_apply]
2024-07-30 07:51:07 -04:00
nth_rewrite 2 [← contrDual_inv (c x) g]
2024-07-29 08:38:01 -04:00
rfl
@[simp]
lemma contrAll_rep_apply {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e)
(g : G) (x : 𝓣.Tensor c ⊗ 𝓣.Tensor d) :
𝓣.contrAll e h (TensorProduct.map (𝓣.rep g) (𝓣.rep g) x) = 𝓣.contrAll e h x := by
change (𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g))) x = _
rw [contrAll_rep]
@[simp]
lemma contrAll_rep_tmul {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e)
(g : G) (x : 𝓣.Tensor c) (y : 𝓣.Tensor d) :
𝓣.contrAll e h ((g • x) ⊗ₜ[R] (g • y)) = 𝓣.contrAll e h (x ⊗ₜ[R] y) := by
2024-07-30 07:51:07 -04:00
nth_rewrite 2 [← @contrAll_rep_apply R _ G]
2024-07-29 08:38:01 -04:00
rfl
2024-07-30 07:51:07 -04:00
end TensorStructure
2024-07-29 08:38:01 -04:00
end