PhysLean/HepLean/SpaceTime/LorentzVector/Contraction.lean

254 lines
10 KiB
Text
Raw Normal View History

2024-07-29 16:54:59 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
2024-07-30 07:51:07 -04:00
import HepLean.SpaceTime.LorentzVector.LorentzAction
2024-07-29 16:54:59 -04:00
import HepLean.SpaceTime.LorentzVector.Covariant
import HepLean.SpaceTime.LorentzTensor.Basic
/-!
# Contractions of Lorentz vectors
We define the contraction between a covariant and contravariant Lorentz vector,
as well as properties thereof.
The structures in this file are used in `HepLean.SpaceTime.LorentzTensor.Real.Basic`
to define the contraction between indices of Lorentz tensors.
-/
noncomputable section
open TensorProduct
namespace LorentzVector
2024-07-30 07:51:07 -04:00
open Matrix
2024-07-29 16:54:59 -04:00
variable {d : } (v : LorentzVector d)
def contrUpDownBi : LorentzVector d →ₗ[] CovariantLorentzVector d →ₗ[] where
toFun v := {
toFun := fun w => ∑ i, v i * w i,
map_add' := by
intro w1 w2
rw [← Finset.sum_add_distrib]
refine Finset.sum_congr rfl (fun i _ => mul_add _ _ _)
map_smul' := by
intro r w
simp only [RingHom.id_apply, smul_eq_mul]
rw [Finset.mul_sum]
refine Finset.sum_congr rfl (fun i _ => ?_)
simp only [HSMul.hSMul, SMul.smul]
ring}
map_add' v1 v2 := by
apply LinearMap.ext
intro w
simp only [LinearMap.coe_mk, AddHom.coe_mk, LinearMap.add_apply]
rw [← Finset.sum_add_distrib]
refine Finset.sum_congr rfl (fun i _ => add_mul _ _ _)
map_smul' r v := by
apply LinearMap.ext
intro w
simp only [LinearMap.coe_mk, AddHom.coe_mk, LinearMap.smul_apply]
rw [Finset.smul_sum]
refine Finset.sum_congr rfl (fun i _ => ?_)
simp only [HSMul.hSMul, SMul.smul]
simp only [RingHom.id, RingHom.coe_mk, MonoidHom.coe_mk, OneHom.coe_mk, id_eq]
ring
def contrUpDown : LorentzVector d ⊗[] CovariantLorentzVector d →ₗ[] :=
TensorProduct.lift contrUpDownBi
2024-07-30 07:51:07 -04:00
lemma contrUpDown_tmul_eq_dotProduct {x : LorentzVector d} {y : CovariantLorentzVector d} :
contrUpDown (x ⊗ₜ[] y) = x ⬝ᵥ y := by
rfl
2024-07-29 16:54:59 -04:00
@[simp]
lemma contrUpDown_stdBasis_left (x : LorentzVector d) (i : Fin 1 ⊕ Fin d) :
contrUpDown (x ⊗ₜ[] (CovariantLorentzVector.stdBasis i)) = x i := by
simp only [contrUpDown, contrUpDownBi, lift.tmul, LinearMap.coe_mk, AddHom.coe_mk]
rw [Finset.sum_eq_single_of_mem i]
simp only [CovariantLorentzVector.stdBasis]
erw [Pi.basisFun_apply]
simp only [LinearMap.stdBasis_same, mul_one]
exact Finset.mem_univ i
intro b _ hbi
simp only [CovariantLorentzVector.stdBasis, mul_eq_zero]
erw [Pi.basisFun_apply]
simp only [LinearMap.stdBasis_apply', ite_eq_right_iff, one_ne_zero, imp_false]
exact Or.inr hbi.symm
@[simp]
lemma contrUpDown_stdBasis_right (x : CovariantLorentzVector d) (i : Fin 1 ⊕ Fin d) :
contrUpDown (e i ⊗ₜ[] x) = x i := by
simp only [contrUpDown, contrUpDownBi, lift.tmul, LinearMap.coe_mk, AddHom.coe_mk]
rw [Finset.sum_eq_single_of_mem i]
erw [Pi.basisFun_apply]
simp only [LinearMap.stdBasis_same, one_mul]
exact Finset.mem_univ i
intro b _ hbi
simp only [CovariantLorentzVector.stdBasis, mul_eq_zero]
erw [Pi.basisFun_apply]
simp only [LinearMap.stdBasis_apply', ite_eq_right_iff, one_ne_zero, imp_false]
exact Or.intro_left (x b = 0) (id (Ne.symm hbi))
def contrDownUp : CovariantLorentzVector d ⊗[] LorentzVector d →ₗ[] :=
contrUpDown ∘ₗ (TensorProduct.comm _ _).toLinearMap
2024-07-30 07:51:07 -04:00
lemma contrDownUp_tmul_eq_dotProduct {x : CovariantLorentzVector d} {y : LorentzVector d} :
contrDownUp (x ⊗ₜ[] y) = x ⬝ᵥ y := by
rw [dotProduct_comm x y]
rfl
/-!
## The unit of the contraction
-/
2024-07-29 16:54:59 -04:00
def unitUp : LorentzVector d ⊗[] CovariantLorentzVector d :=
∑ i, LorentzVector.stdBasis i ⊗ₜ[] CovariantLorentzVector.stdBasis i
lemma unitUp_lid (x : LorentzVector d) :
TensorProduct.rid _
2024-07-30 07:51:07 -04:00
(TensorProduct.map (LinearEquiv.refl _).toLinearMap
(contrUpDown ∘ₗ (TensorProduct.comm _ _).toLinearMap)
((TensorProduct.assoc _ _ _) (unitUp ⊗ₜ[] x))) = x := by
simp only [LinearEquiv.refl_toLinearMap, unitUp]
2024-07-29 16:54:59 -04:00
rw [sum_tmul]
simp only [Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton, map_add, assoc_tmul, map_sum, map_tmul, LinearMap.id_coe, id_eq,
LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, comm_tmul,
contrUpDown_stdBasis_left, rid_tmul, decomp_stdBasis']
def unitDown : CovariantLorentzVector d ⊗[] LorentzVector d :=
∑ i, CovariantLorentzVector.stdBasis i ⊗ₜ[] LorentzVector.stdBasis i
lemma unitDown_lid (x : CovariantLorentzVector d) :
TensorProduct.rid _
2024-07-30 07:51:07 -04:00
(TensorProduct.map (LinearEquiv.refl _).toLinearMap
(contrDownUp ∘ₗ (TensorProduct.comm _ _).toLinearMap)
2024-07-29 16:54:59 -04:00
((TensorProduct.assoc _ _ _) (unitDown ⊗ₜ[] x))) = x := by
simp only [LinearEquiv.refl_toLinearMap, unitDown]
rw [sum_tmul]
simp only [contrDownUp, Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero,
Fin.isValue, Finset.sum_singleton, map_add, assoc_tmul, map_sum, map_tmul, LinearMap.id_coe,
id_eq, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, comm_tmul,
contrUpDown_stdBasis_right, rid_tmul, CovariantLorentzVector.decomp_stdBasis']
2024-07-30 07:51:07 -04:00
/-!
# Contractions and the Lorentz actions
-/
open Matrix
@[simp]
lemma contrUpDown_invariant_lorentzAction : @contrUpDown d ((LorentzVector.rep g) x ⊗ₜ[]
(CovariantLorentzVector.rep g) y) = contrUpDown (x ⊗ₜ[] y) := by
rw [contrUpDown_tmul_eq_dotProduct, contrUpDown_tmul_eq_dotProduct]
simp only [rep_apply, CovariantLorentzVector.rep_apply]
rw [Matrix.dotProduct_mulVec, vecMul_transpose, mulVec_mulVec]
simp only [LorentzGroup.subtype_inv_mul, one_mulVec]
@[simp]
lemma contrDownUp_invariant_lorentzAction : @contrDownUp d ((CovariantLorentzVector.rep g) x ⊗ₜ[]
(LorentzVector.rep g) y) = contrDownUp (x ⊗ₜ[] y) := by
rw [contrDownUp_tmul_eq_dotProduct, contrDownUp_tmul_eq_dotProduct]
rw [dotProduct_comm, dotProduct_comm x y]
simp only [rep_apply, CovariantLorentzVector.rep_apply]
rw [Matrix.dotProduct_mulVec, vecMul_transpose, mulVec_mulVec]
simp only [LorentzGroup.subtype_inv_mul, one_mulVec]
2024-07-29 16:54:59 -04:00
end LorentzVector
namespace minkowskiMatrix
open LorentzVector
open scoped minkowskiMatrix
variable {d : }
def asProdLorentzVector : LorentzVector d ⊗[] LorentzVector d :=
2024-07-30 07:51:07 -04:00
∑ μ, η μ μ • (LorentzVector.stdBasis μ ⊗ₜ[] LorentzVector.stdBasis μ)
2024-07-29 16:54:59 -04:00
def asProdCovariantLorentzVector : CovariantLorentzVector d ⊗[] CovariantLorentzVector d :=
∑ μ, η μ μ • (CovariantLorentzVector.stdBasis μ ⊗ₜ[] CovariantLorentzVector.stdBasis μ)
@[simp]
lemma contrLeft_asProdLorentzVector (x : CovariantLorentzVector d) :
contrDualLeftAux contrDownUp (x ⊗ₜ[] asProdLorentzVector) =
∑ μ, ((η μ μ * x μ) • LorentzVector.stdBasis μ) := by
simp only [asProdLorentzVector]
rw [tmul_sum]
rw [map_sum]
refine Finset.sum_congr rfl (fun μ _ => ?_)
simp only [contrDualLeftAux, contrDownUp, LinearEquiv.refl_toLinearMap, tmul_smul, map_smul,
LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, assoc_symm_tmul, map_tmul,
comm_tmul, contrUpDown_stdBasis_right, LinearMap.id_coe, id_eq, lid_tmul]
exact smul_smul (η μ μ) (x μ) (e μ)
@[simp]
lemma contrLeft_asProdCovariantLorentzVector (x : LorentzVector d) :
contrDualLeftAux contrUpDown (x ⊗ₜ[] asProdCovariantLorentzVector) =
∑ μ, ((η μ μ * x μ) • CovariantLorentzVector.stdBasis μ) := by
simp only [asProdCovariantLorentzVector]
rw [tmul_sum]
rw [map_sum]
refine Finset.sum_congr rfl (fun μ _ => ?_)
simp only [contrDualLeftAux, LinearEquiv.refl_toLinearMap, tmul_smul, LinearMapClass.map_smul,
LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, assoc_symm_tmul, map_tmul,
contrUpDown_stdBasis_left, LinearMap.id_coe, id_eq, lid_tmul]
exact smul_smul (η μ μ) (x μ) (CovariantLorentzVector.stdBasis μ)
@[simp]
lemma asProdLorentzVector_contr_asCovariantProdLorentzVector :
(contrDualMidAux (contrUpDown) (asProdLorentzVector ⊗ₜ[] asProdCovariantLorentzVector))
= @unitUp d := by
simp only [contrDualMidAux, LinearEquiv.refl_toLinearMap, asProdLorentzVector, LinearMap.coe_comp,
LinearEquiv.coe_coe, Function.comp_apply]
rw [sum_tmul, map_sum, map_sum, unitUp]
refine Finset.sum_congr rfl (fun μ _ => ?_)
rw [← tmul_smul, TensorProduct.assoc_tmul]
simp only [map_tmul, LinearMap.id_coe, id_eq, contrLeft_asProdCovariantLorentzVector]
2024-07-30 07:51:07 -04:00
rw [tmul_sum, Finset.sum_eq_single_of_mem μ, tmul_smul]
change (η μ μ * (η μ μ * e μ μ)) • e μ ⊗ₜ[] CovariantLorentzVector.stdBasis μ = _
2024-07-29 16:54:59 -04:00
rw [LorentzVector.stdBasis]
erw [Pi.basisFun_apply]
2024-07-30 07:51:07 -04:00
simp only [LinearMap.stdBasis_same, mul_one, η_apply_mul_η_apply_diag, one_smul]
2024-07-29 16:54:59 -04:00
exact Finset.mem_univ μ
intro ν _ hμν
rw [tmul_smul]
2024-07-30 07:51:07 -04:00
change (η ν ν * (η μ μ * e μ ν)) • (e μ ⊗ₜ[] CovariantLorentzVector.stdBasis ν) = _
2024-07-29 16:54:59 -04:00
rw [LorentzVector.stdBasis]
erw [Pi.basisFun_apply]
simp only [LinearMap.stdBasis_apply', mul_ite, mul_one, mul_zero, ite_smul, zero_smul,
ite_eq_right_iff, smul_eq_zero, mul_eq_zero]
exact fun a => False.elim (hμν (id (Eq.symm a)))
@[simp]
lemma asProdCovariantLorentzVector_contr_asProdLorentzVector :
(contrDualMidAux (contrDownUp) (asProdCovariantLorentzVector ⊗ₜ[] asProdLorentzVector))
= @unitDown d := by
simp only [contrDualMidAux, LinearEquiv.refl_toLinearMap, asProdCovariantLorentzVector,
LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply]
rw [sum_tmul, map_sum, map_sum, unitDown]
refine Finset.sum_congr rfl (fun μ _ => ?_)
2024-07-30 07:51:07 -04:00
rw [smul_tmul, TensorProduct.assoc_tmul]
2024-07-29 16:54:59 -04:00
simp only [tmul_smul, LinearMapClass.map_smul, map_tmul, LinearMap.id_coe, id_eq,
contrLeft_asProdLorentzVector]
2024-07-30 07:51:07 -04:00
rw [tmul_sum, Finset.sum_eq_single_of_mem μ, tmul_smul, smul_smul, LorentzVector.stdBasis]
2024-07-29 16:54:59 -04:00
erw [Pi.basisFun_apply]
2024-07-30 07:51:07 -04:00
simp only [LinearMap.stdBasis_same, mul_one, η_apply_mul_η_apply_diag, one_smul]
2024-07-29 16:54:59 -04:00
exact Finset.mem_univ μ
intro ν _ hμν
rw [tmul_smul]
rw [LorentzVector.stdBasis]
erw [Pi.basisFun_apply]
simp only [LinearMap.stdBasis_apply', mul_ite, mul_one, mul_zero, ite_smul, zero_smul,
ite_eq_right_iff, smul_eq_zero, mul_eq_zero]
exact fun a => False.elim (hμν (id (Eq.symm a)))
end minkowskiMatrix
end