PhysLean/HepLean/SpaceTime/LorentzVector/Covariant.lean

99 lines
3.3 KiB
Text
Raw Normal View History

2024-07-29 16:54:59 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzVector.Basic
import HepLean.SpaceTime.LorentzGroup.Basic
import Mathlib.RepresentationTheory.Basic
/-!
# Covariant Lorentz vectors
The type `LorentzVector` corresponds to contravariant Lorentz tensors.
In this section we define covariant Lorentz tensors.
-/
/-! TODO: Define equivariant map between contravariant and covariant lorentz tensors. -/
noncomputable section
/- The number of space dimensions . -/
variable (d : )
/-- The type of covariant Lorentz Vectors in `d`-space dimensions. -/
def CovariantLorentzVector : Type := (Fin 1 ⊕ Fin d) →
/-- An instance of an additive commutative monoid on `LorentzVector`. -/
instance : AddCommMonoid (CovariantLorentzVector d) := Pi.addCommMonoid
/-- An instance of a module on `LorentzVector`. -/
noncomputable instance : Module (CovariantLorentzVector d) := Pi.module _ _ _
instance : AddCommGroup (CovariantLorentzVector d) := Pi.addCommGroup
/-- The structure of a topological space `LorentzVector d`. -/
instance : TopologicalSpace (CovariantLorentzVector d) :=
haveI : NormedAddCommGroup (CovariantLorentzVector d) := Pi.normedAddCommGroup
UniformSpace.toTopologicalSpace
namespace CovariantLorentzVector
variable {d : } (v : CovariantLorentzVector d)
/-- The standard basis of `LorentzVector` indexed by `Fin 1 ⊕ Fin (d)`. -/
@[simps!]
noncomputable def stdBasis : Basis (Fin 1 ⊕ Fin (d)) (CovariantLorentzVector d) := Pi.basisFun _
lemma decomp_stdBasis (v : CovariantLorentzVector d) : ∑ i, v i • stdBasis i = v := by
funext ν
rw [Finset.sum_apply]
rw [Finset.sum_eq_single_of_mem ν]
simp [HSMul.hSMul, SMul.smul, stdBasis, Pi.basisFun_apply]
erw [Pi.basisFun_apply]
simp only [LinearMap.stdBasis_same, mul_one]
exact Finset.mem_univ ν
intros b _ hbi
simp [HSMul.hSMul, SMul.smul, stdBasis, Pi.basisFun_apply]
erw [Pi.basisFun_apply]
simp [LinearMap.stdBasis_apply]
exact Or.inr hbi
@[simp]
lemma decomp_stdBasis' (v : CovariantLorentzVector d) :
2024-07-30 07:51:07 -04:00
v (Sum.inl 0) • stdBasis (Sum.inl 0) + ∑ a₂ : Fin d, v (Sum.inr a₂) • stdBasis (Sum.inr a₂) = v := by
2024-07-29 16:54:59 -04:00
trans ∑ i, v i • stdBasis i
simp only [Fin.isValue, Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero,
Finset.sum_singleton]
exact decomp_stdBasis v
/-!
## Lorentz group action on covariant Lorentz vectors
-/
/-- The representation of the Lorentz group acting on covariant Lorentz vectors. -/
def rep : Representation (LorentzGroup d) (CovariantLorentzVector d) where
toFun g := Matrix.toLinAlgEquiv stdBasis (LorentzGroup.transpose g⁻¹)
map_one' := by
simp only [inv_one, LorentzGroup.transpose_one, lorentzGroupIsGroup_one_coe, map_one]
map_mul' x y := by
simp only [mul_inv_rev, lorentzGroupIsGroup_inv, LorentzGroup.transpose_mul,
lorentzGroupIsGroup_mul_coe, map_mul]
2024-07-30 07:51:07 -04:00
open Matrix in
@[simp]
lemma rep_apply (g : LorentzGroup d) : rep g v = (g.1⁻¹)ᵀ *ᵥ v := by
trans (LorentzGroup.transpose g⁻¹) *ᵥ v
rfl
apply congrFun
apply congrArg
simp only [LorentzGroup.transpose, lorentzGroupIsGroup_inv, transpose_inj]
rw [← LorentzGroup.coe_inv]
rfl
2024-07-29 16:54:59 -04:00
end CovariantLorentzVector
end