82 lines
3.4 KiB
Text
82 lines
3.4 KiB
Text
![]() |
/-
|
|||
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
Authors: Joseph Tooby-Smith
|
|||
|
-/
|
|||
|
import HepLean.Tensors.TensorSpecies.UnitTensor
|
|||
|
import HepLean.Tensors.TensorSpecies.ContractLemmas
|
|||
|
/-!
|
|||
|
|
|||
|
## Metrics in tensor trees
|
|||
|
|
|||
|
-/
|
|||
|
|
|||
|
open IndexNotation
|
|||
|
open CategoryTheory
|
|||
|
open MonoidalCategory
|
|||
|
open OverColor
|
|||
|
open HepLean.Fin
|
|||
|
open TensorProduct
|
|||
|
noncomputable section
|
|||
|
|
|||
|
namespace TensorSpecies
|
|||
|
open TensorTree
|
|||
|
|
|||
|
/-- The metric of a tensor species in a `PiTensorProduct`. -/
|
|||
|
def metricTensor (S : TensorSpecies) (c : S.C) : S.F.obj (OverColor.mk ![c, c]) :=
|
|||
|
(OverColor.Discrete.pairIsoSep S.FD).hom.hom ((S.metric.app (Discrete.mk c)).hom (1 : S.k))
|
|||
|
|
|||
|
variable {S : TensorSpecies}
|
|||
|
|
|||
|
lemma pairIsoSep_inv_metricTensor (c : S.C) :
|
|||
|
(Discrete.pairIsoSep S.FD).inv.hom (S.metricTensor c) =
|
|||
|
(S.metric.app (Discrete.mk c)).hom (1 : S.k) := by
|
|||
|
simp [metricTensor]
|
|||
|
erw [Discrete.rep_iso_inv_hom_apply]
|
|||
|
|
|||
|
/-- Contraction of a metric tensor with a metric tensor gives the unit.
|
|||
|
Like `S.contr_metric` but with the braiding appearing on the side of the unit. -/
|
|||
|
lemma contr_metric_braid_unit (c : S.C) : (((S.FD.obj (Discrete.mk c)) ◁
|
|||
|
(λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom).hom
|
|||
|
(((S.FD.obj (Discrete.mk c)) ◁ ((S.contr.app (Discrete.mk c)) ▷
|
|||
|
(S.FD.obj (Discrete.mk (S.τ c))))).hom
|
|||
|
(((S.FD.obj (Discrete.mk c)) ◁ (α_ (S.FD.obj (Discrete.mk (c)))
|
|||
|
(S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk (S.τ c)))).inv).hom
|
|||
|
((α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (c)))
|
|||
|
(S.FD.obj (Discrete.mk (S.τ c)) ⊗ S.FD.obj (Discrete.mk (S.τ c)))).hom.hom
|
|||
|
(((OverColor.Discrete.pairIsoSep S.FD).inv.hom (S.metricTensor c) ⊗ₜ
|
|||
|
(OverColor.Discrete.pairIsoSep S.FD).inv.hom (S.metricTensor (S.τ c)))))))) =
|
|||
|
(β_ (S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk c))).hom.hom
|
|||
|
((S.unit.app (Discrete.mk c)).hom (1 : S.k)) := by
|
|||
|
have hx : Function.Injective (β_ (S.FD.obj (Discrete.mk c)) (S.FD.obj (Discrete.mk (S.τ c))) ).hom.hom := by
|
|||
|
change Function.Injective (β_ (S.FD.obj (Discrete.mk c)).V (S.FD.obj (Discrete.mk (S.τ c))).V ).hom
|
|||
|
exact (β_ (S.FD.obj (Discrete.mk c)).V (S.FD.obj (Discrete.mk (S.τ c))).V ).toLinearEquiv.toEquiv.injective
|
|||
|
apply hx
|
|||
|
rw [pairIsoSep_inv_metricTensor, pairIsoSep_inv_metricTensor]
|
|||
|
rw [S.contr_metric c]
|
|||
|
change _ = (β_ (S.FD.obj { as := S.τ c }) (S.FD.obj { as := c })).inv.hom
|
|||
|
((β_ (S.FD.obj { as := S.τ c }) (S.FD.obj { as := c })).hom.hom _)
|
|||
|
rw [Discrete.rep_iso_inv_hom_apply]
|
|||
|
|
|||
|
lemma metricTensor_contr_dual_metricTensor_perm_cond (c : S.C) : ∀ (x : Fin (Nat.succ 0).succ),
|
|||
|
((Sum.elim ![c, c] ![S.τ c, S.τ c] ∘ ⇑finSumFinEquiv.symm) ∘ Fin.succAbove 1 ∘ Fin.succAbove 1) x =
|
|||
|
(![S.τ c, c] ∘ ⇑(finMapToEquiv ![1, 0] ![1, 0]).symm) x := by
|
|||
|
intro x
|
|||
|
fin_cases x
|
|||
|
· rfl
|
|||
|
· rfl
|
|||
|
|
|||
|
/-- The contraction of a metric tensor with its dual gives the unit. -/
|
|||
|
lemma metricTensor_contr_dual_metricTensor_eq_unit (c : S.C) :
|
|||
|
{S.metricTensor c | μ ν ⊗ S.metricTensor (S.τ c) | ν ρ}ᵀ.tensor =
|
|||
|
(perm (OverColor.equivToHomEq (finMapToEquiv ![1, 0] ![1, 0])
|
|||
|
(metricTensor_contr_dual_metricTensor_perm_cond c)) {S.unitTensor c | μ ρ}ᵀ).tensor := by
|
|||
|
rw [contr_two_two_inner, contr_metric_braid_unit, Discrete.pairIsoSep_β]
|
|||
|
change (S.F.map _ ≫ S.F.map _ ).hom _ = _
|
|||
|
rw [← S.F.map_comp]
|
|||
|
rfl
|
|||
|
|
|||
|
end TensorSpecies
|
|||
|
|
|||
|
end
|