PhysLean/HepLean/PerturbationTheory/Wick/Koszul/OperatorMap.lean

344 lines
14 KiB
Text
Raw Normal View History

2024-12-15 12:42:50 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Wick.Koszul.SuperCommuteM
/-!
# Koszul signs and ordering for lists and algebras
2024-12-17 07:15:47 +00:00
See e.g.
- https://pcteserver.mi.infn.it/~molinari/NOTES/WICK23.pdf
2024-12-15 12:42:50 +00:00
-/
namespace Wick
noncomputable section
2024-12-19 11:23:49 +00:00
class OperatorMap {A : Type} [Semiring A] [Algebra A]
(q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1] (F : FreeAlgebra I →ₐ[] A) : Prop where
superCommute_mem_center : ∀ i j, F (superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j)) ∈ Subalgebra.center A
superCommute_diff_grade_zero : ∀ i j, q i ≠ q j → F (superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j)) = 0
superCommute_ordered_zero : ∀ i j, ∀ a b,
F (koszulOrder le1 q (a * superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j) * b)) = 0
2024-12-15 12:42:50 +00:00
2024-12-19 11:23:49 +00:00
namespace OperatorMap
variable {A : Type} [Semiring A] [Algebra A] {q : I → Fin 2} {le1 : I → I → Prop}
[DecidableRel le1] (F : FreeAlgebra I →ₐ[] A)
lemma superCommute_ofList_singleton_ι_center [OperatorMap q le1 F] (i j :I) :
F (superCommute q (ofList [i] xa) (FreeAlgebra.ι j)) ∈ Subalgebra.center A := by
have h1 : F (superCommute q (ofList [i] xa) (FreeAlgebra.ι j)) =
xa • F (superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j)) := by
2024-12-15 12:42:50 +00:00
rw [← map_smul]
congr
rw [ofList_eq_smul_one, ofList_singleton]
rw [map_smul]
rfl
rw [h1]
refine Subalgebra.smul_mem (Subalgebra.center A) ?_ xa
2024-12-19 11:23:49 +00:00
exact superCommute_mem_center (le1 := le1) i j
2024-12-15 12:42:50 +00:00
2024-12-19 11:23:49 +00:00
end OperatorMap
2024-12-15 12:42:50 +00:00
2024-12-19 11:23:49 +00:00
lemma superCommuteTake_operatorMap {I : Type} (q : I → Fin 2)
(le1 : I → I → Prop) [DecidableRel le1]
(lb : List I) (xa xb : ) (n : )
2024-12-15 12:42:50 +00:00
(hn : n < lb.length) {A : Type} [Semiring A] [Algebra A] (f : FreeAlgebra I →ₐ[] A)
2024-12-19 11:23:49 +00:00
[OperatorMap q le1 f] (i : I) :
2024-12-15 12:42:50 +00:00
f (superCommuteTake q [i] lb xa xb n hn) =
f (superCommute q (ofList [i] xa) (FreeAlgebra.ι (lb.get ⟨n, hn⟩)))
* (superCommuteCoef q [i] (List.take n lb) •
f (ofList (List.eraseIdx lb n) xb)) := by
have hn : f ((superCommute q) (ofList [i] xa) (FreeAlgebra.ι (lb.get ⟨n, hn⟩))) ∈
2024-12-19 11:23:49 +00:00
Subalgebra.center A := OperatorMap.superCommute_ofList_singleton_ι_center (le1 := le1) f i (lb.get ⟨n, hn⟩)
2024-12-15 12:42:50 +00:00
rw [Subalgebra.mem_center_iff] at hn
rw [superCommuteTake, map_mul, map_mul, map_smul, hn, mul_assoc, smul_mul_assoc,
← map_mul, ← ofList_pair]
congr
· exact Eq.symm (List.eraseIdx_eq_take_drop_succ lb n)
· exact one_mul xb
2024-12-19 11:23:49 +00:00
lemma superCommuteTakeM_operatorMap {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
2024-12-15 12:42:50 +00:00
(q : I → Fin 2) (c : (Σ i, f i)) (r : List I) (x y : ) (n : )
(hn : n < r.length)
2024-12-19 11:23:49 +00:00
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
2024-12-15 12:42:50 +00:00
{A : Type} [Semiring A] [Algebra A] (F : FreeAlgebra (Σ i, f i) →ₐ[] A)
2024-12-19 11:23:49 +00:00
[OperatorMap (fun i => q i.1) le1 F] :
2024-12-15 12:42:50 +00:00
F (superCommuteTakeM q [c] r x y n hn) = superCommuteCoefM q [c] (List.take n r) •
(F (superCommute (fun i => q i.1) (ofList [c] x) (freeAlgebraMap f (FreeAlgebra.ι (r.get ⟨n, hn⟩))))
* F (ofListM f (List.eraseIdx r n) y)) := by
rw [superCommuteTakeM]
rw [map_smul]
congr
rw [map_mul, map_mul]
have h1 : F ((superCommute fun i => q i.fst) (ofList [c] x) ((freeAlgebraMap f) (FreeAlgebra.ι (r.get ⟨n, hn⟩))))
2024-12-19 11:23:49 +00:00
∈ Subalgebra.center A := by
rw [freeAlgebraMap_ι]
rw [map_sum, map_sum]
refine Subalgebra.sum_mem _ ?_
intro n
exact fun a => OperatorMap.superCommute_ofList_singleton_ι_center (le1 := le1) F c _
2024-12-15 12:42:50 +00:00
rw [Subalgebra.mem_center_iff] at h1
rw [h1, mul_assoc, ← map_mul]
congr
rw [ofListM, ofListM, ofListM, ← map_mul]
congr
rw [← ofList_pair, one_mul]
congr
exact Eq.symm (List.eraseIdx_eq_take_drop_succ r n)
2024-12-17 07:15:47 +00:00
lemma superCommute_koszulOrder_le_ofList {I : Type}
2024-12-15 12:42:50 +00:00
(q : I → Fin 2) (r : List I) (x : )
2024-12-19 09:48:35 +00:00
(le1 :I → I → Prop) [DecidableRel le1] [IsTotal I le1] [IsTrans I le1]
2024-12-17 07:15:47 +00:00
(i : I)
2024-12-15 12:42:50 +00:00
{A : Type} [Semiring A] [Algebra A]
2024-12-19 11:23:49 +00:00
(F : FreeAlgebra I →ₐ A) [OperatorMap q le1 F] :
2024-12-17 07:15:47 +00:00
F ((superCommute q (FreeAlgebra.ι i) (koszulOrder le1 q (ofList r x)))) =
∑ n : Fin r.length, (superCommuteCoef q [r.get n] (r.take n)) •
(F (((superCommute q) (ofList [i] 1)) (FreeAlgebra.ι (r.get n))) *
F ((koszulOrder le1 q) (ofList (r.eraseIdx ↑n) x))) := by
2024-12-19 09:48:35 +00:00
rw [koszulOrder_ofList, map_smul, map_smul, ← ofList_singleton, superCommute_ofList_sum]
rw [map_sum, ← (HepLean.List.insertionSortEquiv le1 r).sum_comp]
2024-12-17 07:15:47 +00:00
conv_lhs =>
2024-12-19 09:48:35 +00:00
enter [2, 2]
2024-12-17 07:15:47 +00:00
intro n
2024-12-19 11:23:49 +00:00
rw [superCommuteTake_operatorMap (le1 := le1)]
2024-12-19 09:48:35 +00:00
enter [1, 2, 2, 2]
2024-12-17 07:15:47 +00:00
change ((List.insertionSort le1 r).get ∘ (HepLean.List.insertionSortEquiv le1 r)) n
rw [HepLean.List.insertionSort_get_comp_insertionSortEquiv]
conv_lhs =>
2024-12-19 09:48:35 +00:00
enter [2, 2]
2024-12-17 07:15:47 +00:00
intro n
2024-12-19 09:48:35 +00:00
rw [HepLean.List.eraseIdx_insertionSort_fin le1 r n]
2024-12-17 07:15:47 +00:00
rw [ofList_insertionSort_eq_koszulOrder le1 q]
rw [Finset.smul_sum]
conv_lhs =>
rhs
intro n
2024-12-19 09:48:35 +00:00
rw [map_smul, smul_smul, Algebra.mul_smul_comm, smul_smul]
2024-12-17 07:15:47 +00:00
congr
funext n
2024-12-19 09:48:35 +00:00
by_cases hq : q i ≠ q (r.get n)
2024-12-19 11:23:49 +00:00
· have hn := OperatorMap.superCommute_diff_grade_zero (q := q) (F := F) le1 i (r.get n) hq
2024-12-19 09:48:35 +00:00
conv_lhs =>
enter [2, 1]
rw [ofList_singleton, hn]
conv_rhs =>
enter [2, 1]
rw [ofList_singleton, hn]
simp
· congr 1
trans superCommuteCoefLE q le1 r i n
· rw [superCommuteCoefLE, mul_assoc]
refine superCommuteCoefLE_eq_get q le1 r i n ?_
simpa using hq
2024-12-15 12:42:50 +00:00
2024-12-17 07:15:47 +00:00
lemma koszulOrder_of_le_all_ofList {I : Type}
(q : I → Fin 2) (r : List I) (x : ) (le1 : I → I → Prop) [DecidableRel le1]
2024-12-19 11:23:49 +00:00
(i : I)
2024-12-15 12:42:50 +00:00
{A : Type} [Semiring A] [Algebra A]
2024-12-19 11:23:49 +00:00
(F : FreeAlgebra I →ₐ A) [OperatorMap q le1 F] :
2024-12-17 07:15:47 +00:00
F (koszulOrder le1 q (ofList r x * FreeAlgebra.ι i))
= superCommuteCoef q [i] r • F (koszulOrder le1 q (FreeAlgebra.ι i * ofList r x)) := by
2024-12-15 12:42:50 +00:00
conv_lhs =>
2024-12-19 09:48:35 +00:00
enter [2, 2]
2024-12-15 12:42:50 +00:00
rw [← ofList_singleton]
2024-12-17 07:15:47 +00:00
rw [ofListM_ofList_superCommute' q]
2024-12-15 12:42:50 +00:00
rw [map_sub]
rw [sub_eq_add_neg]
rw [map_add]
conv_lhs =>
2024-12-19 09:48:35 +00:00
enter [2, 2]
2024-12-15 12:42:50 +00:00
rw [map_smul]
rw [← neg_smul]
rw [map_smul, map_smul, map_smul]
2024-12-19 11:23:49 +00:00
conv_lhs =>
rhs
rhs
rw [superCommute_ofList_sum]
rw [map_sum, map_sum]
dsimp [superCommuteTake]
rw [ofList_singleton]
rhs
intro n
rw [Algebra.smul_mul_assoc, Algebra.smul_mul_assoc]
rw [map_smul, map_smul]
rw [OperatorMap.superCommute_ordered_zero ]
simp
rw [ofList_singleton]
2024-12-15 12:42:50 +00:00
2024-12-17 07:15:47 +00:00
lemma le_all_mul_koszulOrder_ofList {I : Type}
(q : I → Fin 2) (r : List I) (x : ) (le1 : I → I→ Prop) [DecidableRel le1]
(i : I) (hi : ∀ (j : I), le1 j i)
2024-12-15 12:42:50 +00:00
{A : Type} [Semiring A] [Algebra A]
2024-12-19 11:23:49 +00:00
(F : FreeAlgebra I →ₐ A) [OperatorMap q le1 F] :
2024-12-17 07:15:47 +00:00
F (FreeAlgebra.ι i * koszulOrder le1 q (ofList r x)) =
F ((koszulOrder le1 q) (FreeAlgebra.ι i * ofList r x)) +
F (((superCommute q) (ofList [i] 1)) ((koszulOrder le1 q) (ofList r x))) := by
rw [koszulOrder_ofList, Algebra.mul_smul_comm, map_smul, ← ofList_singleton,
ofList_ofList_superCommute q, map_add, smul_add, ← map_smul]
2024-12-15 12:42:50 +00:00
conv_lhs =>
2024-12-19 09:48:35 +00:00
enter [1, 2]
2024-12-17 07:15:47 +00:00
rw [← Algebra.smul_mul_assoc, smul_smul, mul_comm, ← smul_smul, ← koszulOrder_ofList,
Algebra.smul_mul_assoc, ofList_singleton]
rw [koszulOrder_mul_ge, map_smul]
congr
· rw [koszulOrder_of_le_all_ofList]
2024-12-19 09:48:35 +00:00
rw [superCommuteCoef_perm_snd q [i] (List.insertionSort le1 r) r
(List.perm_insertionSort le1 r)]
rw [smul_smul]
rw [superCommuteCoef_mul_self]
simp [ofList_singleton]
2024-12-17 07:15:47 +00:00
· rw [map_smul, map_smul]
· exact fun j => hi j
def superCommuteCenterOrder {I : Type}
(q : I → Fin 2) (r : List I) (i : I)
{A : Type} [Semiring A] [Algebra A]
2024-12-19 11:23:49 +00:00
(F : FreeAlgebra I →ₐ[] A)
2024-12-17 07:15:47 +00:00
(n : Option (Fin r.length)) : A :=
match n with
| none => 1
| some n => superCommuteCoef q [r.get n] (r.take n) • F (((superCommute q) (ofList [i] 1)) (FreeAlgebra.ι (r.get n)))
@[simp]
lemma superCommuteCenterOrder_none {I : Type}
(q : I → Fin 2) (r : List I) (i : I)
{A : Type} [Semiring A] [Algebra A]
2024-12-19 11:23:49 +00:00
(F : FreeAlgebra I →ₐ[] A) :
2024-12-17 07:15:47 +00:00
superCommuteCenterOrder q r i F none = 1 := by
simp [superCommuteCenterOrder]
open HepLean.List
lemma le_all_mul_koszulOrder_ofList_expand {I : Type}
(q : I → Fin 2) (r : List I) (x : ) (le1 : I → I→ Prop) [DecidableRel le1]
2024-12-19 09:48:35 +00:00
[IsTotal I le1] [IsTrans I le1]
2024-12-17 07:15:47 +00:00
(i : I) (hi : ∀ (j : I), le1 j i)
{A : Type} [Semiring A] [Algebra A]
2024-12-19 11:23:49 +00:00
(F : FreeAlgebra I →ₐ[] A) [OperatorMap q le1 F] :
2024-12-17 07:15:47 +00:00
F (FreeAlgebra.ι i * koszulOrder le1 q (ofList r x)) =
∑ n, superCommuteCenterOrder q r i F n * F ((koszulOrder le1 q) (ofList (optionEraseZ r i n) x)) := by
rw [le_all_mul_koszulOrder_ofList]
2024-12-15 12:42:50 +00:00
conv_lhs =>
rhs
2024-12-17 07:15:47 +00:00
rw [ofList_singleton]
rw [superCommute_koszulOrder_le_ofList]
simp only [List.get_eq_getElem, Fintype.sum_option, superCommuteCenterOrder_none, one_mul]
2024-12-15 12:42:50 +00:00
congr
2024-12-17 07:15:47 +00:00
· rw [← ofList_singleton, ← ofList_pair]
simp only [List.singleton_append, one_mul]
rfl
· funext n
simp only [superCommuteCenterOrder, List.get_eq_getElem, Algebra.smul_mul_assoc]
rfl
exact fun j => hi j
lemma le_all_mul_koszulOrder_ofListM_expand {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) (r : List I) (x : ) (le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
2024-12-19 09:48:35 +00:00
[IsTotal (Σ i, f i) le1] [IsTrans (Σ i, f i) le1]
2024-12-17 07:15:47 +00:00
(i : (Σ i, f i)) (hi : ∀ (j : (Σ i, f i)), le1 j i)
{A : Type} [Semiring A] [Algebra A]
2024-12-19 11:23:49 +00:00
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F] :
2024-12-17 07:15:47 +00:00
F (ofList [i] 1 * koszulOrder le1 (fun i => q i.1) (ofListM f r x)) =
F ((koszulOrder le1 fun i => q i.fst) (ofList [i] 1 * ofListM f r x)) +
∑ n : (Fin r.length), superCommuteCoef q [r.get n] (List.take (↑n) r) •
F (((superCommute fun i => q i.fst) (ofList [i] 1)) (ofListM f [r.get n] 1)) *
F ((koszulOrder le1 fun i => q i.fst) (ofListM f (r.eraseIdx ↑n) x)) := by
match r with
| [] =>
simp only [map_mul, List.length_nil, Finset.univ_eq_empty, List.get_eq_getElem, List.take_nil,
List.eraseIdx_nil, Algebra.smul_mul_assoc, Finset.sum_empty, add_zero]
rw [ofListM_empty_smul]
simp only [map_smul, koszulOrder_one, map_one, Algebra.mul_smul_comm, mul_one]
rw [ofList_singleton, koszulOrder_ι]
| r0 :: r =>
rw [ofListM_expand, map_sum, Finset.mul_sum, map_sum]
2024-12-19 11:23:49 +00:00
let e1 (a : CreatAnnilateSect f (r0 :: r)) :
Option (Fin a.toList.length) ≃ Option (Fin (r0 :: r).length) :=
Equiv.optionCongr (Fin.castOrderIso (CreatAnnilateSect.toList_length a)).toEquiv
2024-12-17 07:15:47 +00:00
conv_lhs =>
rhs
intro a
rw [ofList_singleton, le_all_mul_koszulOrder_ofList_expand _ _ _ _ _ hi]
rw [← (e1 a).symm.sum_comp]
rhs
intro n
rw [Finset.sum_comm]
simp only [ Fintype.sum_option]
congr 1
· simp only [List.length_cons, List.get_eq_getElem, superCommuteCenterOrder,
Equiv.optionCongr_symm, OrderIso.toEquiv_symm, Fin.symm_castOrderIso, Equiv.optionCongr_apply,
RelIso.coe_fn_toEquiv, Option.map_none', optionEraseZ, one_mul, e1]
rw [← map_sum, Finset.mul_sum, ← map_sum]
apply congrArg
apply congrArg
congr
funext x
rw [ofList_cons_eq_ofList]
· congr
funext n
2024-12-19 11:23:49 +00:00
rw [← (CreatAnnilateSect.extractEquiv n).symm.sum_comp]
2024-12-17 07:15:47 +00:00
simp only [List.get_eq_getElem, List.length_cons, Equiv.optionCongr_symm, OrderIso.toEquiv_symm,
Fin.symm_castOrderIso, Equiv.optionCongr_apply, RelIso.coe_fn_toEquiv, Option.map_some',
Fin.castOrderIso_apply, Algebra.smul_mul_assoc, e1]
erw [Finset.sum_product]
2024-12-19 11:23:49 +00:00
have h1 (a0 : f (r0 :: r)[↑n]) (a : CreatAnnilateSect f ((r0 :: r).eraseIdx ↑n)):
superCommuteCenterOrder (fun i => q i.fst) ((CreatAnnilateSect.extractEquiv n).symm (a0, a)).toList i F
2024-12-17 07:15:47 +00:00
(some (Fin.cast (by simp) n)) = superCommuteCoef q [(r0 :: r).get n] (List.take (↑n) (r0 :: r)) •
F (((superCommute fun i => q i.fst) (ofList [i] 1)) (FreeAlgebra.ι ⟨(r0 :: r).get n, a0⟩)) := by
simp only [superCommuteCenterOrder, List.get_eq_getElem, List.length_cons, Fin.coe_cast]
2024-12-19 11:23:49 +00:00
erw [CreatAnnilateSect.extractEquiv_symm_toList_get_same]
2024-12-17 07:15:47 +00:00
have hsc : superCommuteCoef (fun i => q i.fst) [⟨(r0 :: r).get n, a0⟩]
2024-12-19 11:23:49 +00:00
(List.take (↑n) ((CreatAnnilateSect.extractEquiv n).symm (a0, a)).toList) =
2024-12-17 07:15:47 +00:00
superCommuteCoef q [(r0 :: r).get n] (List.take (↑n) ((r0 :: r))) := by
simp only [superCommuteCoef, List.get_eq_getElem, List.length_cons, Fin.isValue,
2024-12-19 11:23:49 +00:00
CreatAnnilateSect.toList_grade_take]
2024-12-17 07:15:47 +00:00
rfl
erw [hsc]
rfl
conv_lhs =>
rhs
intro a0
rhs
intro a
erw [h1]
conv_lhs =>
rhs
intro a0
rw [← Finset.mul_sum]
2024-12-19 11:23:49 +00:00
2024-12-17 07:15:47 +00:00
conv_lhs =>
rhs
intro a0
2024-12-19 09:48:35 +00:00
enter [2, 2]
2024-12-17 07:15:47 +00:00
intro a
2024-12-19 11:23:49 +00:00
simp [optionEraseZ]
rhs
rhs
lhs
rw [← CreatAnnilateSect.eraseIdx_toList]
erw [CreatAnnilateSect.extractEquiv_symm_eraseIdx]
2024-12-17 07:15:47 +00:00
rw [← Finset.sum_mul]
conv_lhs =>
lhs
rw [← Finset.smul_sum]
erw [← map_sum, ← map_sum, ← ofListM_singleton_one]
conv_lhs =>
rhs
rw [← map_sum, ← map_sum]
simp only [List.get_eq_getElem, List.length_cons, Equiv.symm_apply_apply,
Algebra.smul_mul_assoc]
erw [← ofListM_expand]
simp only [List.get_eq_getElem, List.length_cons, Algebra.smul_mul_assoc]
2024-12-15 12:42:50 +00:00
end
end Wick