PhysLean/HepLean/PerturbationTheory/Wick/Koszul/SuperCommute.lean

271 lines
12 KiB
Text
Raw Normal View History

2024-12-15 12:42:50 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Wick.Koszul.OfList
/-!
# Koszul signs and ordering for lists and algebras
-/
namespace Wick
noncomputable section
def superCommuteMonoidAlgebra {I : Type} (q : I → Fin 2) (l : List I) :
MonoidAlgebra (FreeMonoid I) →ₗ[] MonoidAlgebra (FreeMonoid I) :=
Finsupp.lift (MonoidAlgebra (FreeMonoid I)) (List I)
(fun r =>
Finsupp.lsingle (R := ) (l ++ r) 1 +
if grade q l = 1 ∧ grade q r = 1 then
Finsupp.lsingle (R := ) (r ++ l) 1
else
- Finsupp.lsingle (R := ) (r ++ l) 1)
def superCommuteAlgebra {I : Type} (q : I → Fin 2) :
MonoidAlgebra (FreeMonoid I) →ₗ[] FreeAlgebra I →ₗ[] FreeAlgebra I :=
Finsupp.lift (FreeAlgebra I →ₗ[] FreeAlgebra I) (List I) fun l =>
(FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm.toAlgHom.toLinearMap
∘ₗ superCommuteMonoidAlgebra q l
∘ₗ FreeAlgebra.equivMonoidAlgebraFreeMonoid.toAlgHom.toLinearMap)
def superCommute {I : Type} (q : I → Fin 2) :
FreeAlgebra I →ₗ[] FreeAlgebra I →ₗ[] FreeAlgebra I :=
superCommuteAlgebra q
∘ₗ FreeAlgebra.equivMonoidAlgebraFreeMonoid.toAlgHom.toLinearMap
lemma equivMonoidAlgebraFreeMonoid_freeAlgebra {I : Type} (i : I) :
(FreeAlgebra.equivMonoidAlgebraFreeMonoid (FreeAlgebra.ι i)) = Finsupp.single (FreeMonoid.of i) 1 := by
simp [FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.single]
@[simp]
lemma superCommute_ι {I : Type} (q : I → Fin 2) (i j : I) :
superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j) =
FreeAlgebra.ι i * FreeAlgebra.ι j +
if q i = 1 ∧ q j = 1 then
FreeAlgebra.ι j * FreeAlgebra.ι i
else
- FreeAlgebra.ι j * FreeAlgebra.ι i := by
simp only [superCommute, superCommuteAlgebra, AlgEquiv.toAlgHom_eq_coe,
AlgEquiv.toAlgHom_toLinearMap, LinearMap.coe_comp, Function.comp_apply,
AlgEquiv.toLinearMap_apply, equivMonoidAlgebraFreeMonoid_freeAlgebra, Fin.isValue, neg_mul]
erw [Finsupp.lift_apply]
simp only [superCommuteMonoidAlgebra, Finsupp.lsingle_apply, Fin.isValue, grade_freeMonoid,
zero_smul, Finsupp.sum_single_index, one_smul, LinearMap.coe_comp, Function.comp_apply,
AlgEquiv.toLinearMap_apply, equivMonoidAlgebraFreeMonoid_freeAlgebra]
conv_lhs =>
rhs
erw [Finsupp.lift_apply]
simp only [FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply, Fin.isValue,
smul_add, MonoidAlgebra.smul_single', mul_one, smul_ite, smul_neg, Finsupp.sum_add,
Finsupp.single_zero, Finsupp.sum_single_index, grade_freeMonoid, neg_zero, ite_self,
AlgEquiv.ofAlgHom_symm_apply, map_add, MonoidAlgebra.lift_single, one_smul]
congr
by_cases hq : q i = 1 ∧ q j = 1
· rw [if_pos hq, if_pos hq]
simp only [MonoidAlgebra.lift_single, one_smul]
obtain ⟨left, right⟩ := hq
rfl
· rw [if_neg hq, if_neg hq]
simp only [map_neg, MonoidAlgebra.lift_single, one_smul, neg_inj]
rfl
lemma superCommute_ofList_ofList {I : Type} (q : I → Fin 2) (l r : List I) (x y : ) :
superCommute q (ofList l x) (ofList r y) =
ofList (l ++ r) (x * y) + (if grade q l = 1 ∧ grade q r = 1 then
ofList (r ++ l) (y * x) else - ofList (r ++ l) (y * x)) := by
simp only [superCommute, superCommuteAlgebra, AlgEquiv.toAlgHom_eq_coe,
AlgEquiv.toAlgHom_toLinearMap, ofList, LinearMap.coe_comp, Function.comp_apply,
AlgEquiv.toLinearMap_apply, AlgEquiv.apply_symm_apply, Fin.isValue]
erw [Finsupp.lift_apply]
simp only [superCommuteMonoidAlgebra, Finsupp.lsingle_apply, Fin.isValue, zero_smul,
Finsupp.sum_single_index, LinearMap.smul_apply, LinearMap.coe_comp, Function.comp_apply,
AlgEquiv.toLinearMap_apply, AlgEquiv.apply_symm_apply]
conv_lhs =>
rhs
rhs
erw [Finsupp.lift_apply]
simp only [Fin.isValue, smul_add, MonoidAlgebra.smul_single', mul_one, smul_ite, smul_neg,
Finsupp.sum_add, Finsupp.single_zero, Finsupp.sum_single_index, neg_zero, ite_self, map_add]
by_cases hg : grade q l = 1 ∧ grade q r = 1
· simp only [hg, Fin.isValue, and_self, ↓reduceIte]
congr
· rw [← map_smul]
congr
exact MonoidAlgebra.smul_single' x (l ++ r) y
· rw [← map_smul]
congr
rw [mul_comm]
exact MonoidAlgebra.smul_single' x (r ++ l) y
· simp only [Fin.isValue, hg, ↓reduceIte, map_neg, smul_neg]
congr
· rw [← map_smul]
congr
exact MonoidAlgebra.smul_single' x (l ++ r) y
· rw [← map_smul]
congr
rw [mul_comm]
exact MonoidAlgebra.smul_single' x (r ++ l) y
@[simp]
lemma superCommute_zero {I : Type} (q : I → Fin 2) (a : FreeAlgebra I) :
superCommute q a 0 = 0 := by
simp [superCommute]
@[simp]
lemma superCommute_one {I : Type} (q : I → Fin 2) (a : FreeAlgebra I) :
superCommute q a 1 = 0 := by
let f : FreeAlgebra I →ₗ[] FreeAlgebra I := (LinearMap.flip (superCommute q)) 1
have h1 : FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single [] 1) = (1 : FreeAlgebra I) := by
simp_all only [EmbeddingLike.map_eq_one_iff]
rfl
have f_single (l : FreeMonoid I) (x : ) :
f ((FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single l x)))
= 0 := by
simp only [superCommute, superCommuteAlgebra, AlgEquiv.toAlgHom_eq_coe,
AlgEquiv.toAlgHom_toLinearMap, LinearMap.flip_apply, LinearMap.coe_comp, Function.comp_apply,
AlgEquiv.toLinearMap_apply, AlgEquiv.apply_symm_apply, f]
rw [← h1]
erw [Finsupp.lift_apply]
simp only [superCommuteMonoidAlgebra, Finsupp.lsingle_apply, Fin.isValue, zero_smul,
Finsupp.sum_single_index, LinearMap.smul_apply, LinearMap.coe_comp, Function.comp_apply,
AlgEquiv.toLinearMap_apply, AlgEquiv.apply_symm_apply, smul_eq_zero,
EmbeddingLike.map_eq_zero_iff]
apply Or.inr
conv_lhs =>
erw [Finsupp.lift_apply]
simp
have hf : f = 0 := by
let e : FreeAlgebra I ≃ₗ[] MonoidAlgebra (FreeMonoid I) :=
FreeAlgebra.equivMonoidAlgebraFreeMonoid.toLinearEquiv
apply (LinearEquiv.eq_comp_toLinearMap_iff (e₁₂ := e.symm) _ _).mp
apply MonoidAlgebra.lhom_ext'
intro l
apply LinearMap.ext
intro x
simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply,
MonoidAlgebra.lsingle_apply, LinearMap.zero_comp, LinearMap.zero_apply]
erw [f_single]
change f a = _
rw [hf]
simp
lemma superCommute_ofList_mul {I : Type} (q : I → Fin 2) (la lb lc : List I) (xa xb xc : ) :
superCommute q (ofList la xa) (ofList lb xb * ofList lc xc) =
(superCommute q (ofList la xa) (ofList lb xb) * ofList lc xc +
superCommuteCoef q la lb • ofList lb xb * superCommute q (ofList la xa) (ofList lc xc)) := by
simp only [Algebra.smul_mul_assoc]
conv_lhs => rw [← ofList_pair]
simp only [superCommute_ofList_ofList, Fin.isValue, grade_append, ite_eq_right_iff, zero_ne_one,
imp_false]
simp only [superCommute_ofList_ofList, Fin.isValue, grade_append, ite_eq_right_iff, zero_ne_one,
imp_false, ofList_triple_assoc, ofList_triple, ofList_pair, superCommuteCoef]
by_cases hla : grade q la = 1
· simp only [hla, Fin.isValue, true_and, ite_not, ite_smul, neg_smul, one_smul]
by_cases hlb : grade q lb = 1
· simp only [hlb, Fin.isValue, ↓reduceIte]
by_cases hlc : grade q lc = 1
· simp only [Fin.isValue, hlc, ↓reduceIte]
simp only [mul_assoc, add_mul, mul_add]
abel
· have hc : grade q lc = 0 := by
omega
simp only [Fin.isValue, hc, one_ne_zero, ↓reduceIte, zero_ne_one]
simp only [mul_assoc, add_mul, mul_add, mul_neg, neg_add_rev, neg_neg]
abel
· have hb : grade q lb = 0 := by
omega
simp only [hb, Fin.isValue, zero_ne_one, ↓reduceIte]
by_cases hlc : grade q lc = 1
· simp only [Fin.isValue, hlc, zero_ne_one, ↓reduceIte]
simp only [mul_assoc, add_mul, neg_mul, mul_add]
abel
· have hc : grade q lc = 0 := by
omega
simp only [Fin.isValue, hc, ↓reduceIte, zero_ne_one]
simp only [mul_assoc, add_mul, neg_mul, mul_add, mul_neg]
abel
· simp only [Fin.isValue, hla, false_and, ↓reduceIte, mul_assoc, add_mul, neg_mul, mul_add,
mul_neg, smul_add, one_smul, smul_neg]
abel
def superCommuteTake {I : Type} (q : I → Fin 2) (la lb : List I) (xa xb : ) (n : )
(hn : n < lb.length) : FreeAlgebra I :=
superCommuteCoef q la (List.take n lb) •
ofList (List.take n lb) 1 *
superCommute q (ofList la xa) (FreeAlgebra.ι (lb.get ⟨n, hn⟩))
* ofList (List.drop (n + 1) lb) xb
lemma superCommute_ofList_cons {I : Type} (q : I → Fin 2) (la lb : List I) (xa xb : ) (b1 : I) :
superCommute q (ofList la xa) (ofList (b1 :: lb) xb) =
superCommute q (ofList la xa) (FreeAlgebra.ι b1) * ofList lb xb +
superCommuteCoef q la [b1] •
(ofList [b1] 1) * superCommute q (ofList la xa) (ofList lb xb) := by
rw [ofList_cons_eq_ofList]
rw [superCommute_ofList_mul]
congr
· exact ofList_singleton b1
lemma superCommute_ofList_sum {I : Type} (q : I → Fin 2) (la lb : List I) (xa xb : ) :
superCommute q (ofList la xa) (ofList lb xb) =
∑ (n : Fin lb.length), superCommuteTake q la lb xa xb n n.prop := by
induction lb with
| nil =>
simp only [superCommute_ofList_ofList, List.append_nil, Fin.isValue, grade_empty, zero_ne_one,
and_false, ↓reduceIte, List.nil_append, List.length_nil, Finset.univ_eq_empty,
Finset.sum_empty]
ring_nf
abel
| cons b lb ih =>
rw [superCommute_ofList_cons, ih]
have h0 : ((superCommute q) (ofList la xa)) (FreeAlgebra.ι b) * ofList lb xb =
superCommuteTake q la (b :: lb) xa xb 0 (Nat.zero_lt_succ lb.length) := by
simp [superCommuteTake, superCommuteCoef_empty, ofList_empty]
rw [h0]
have hf (f : Fin (b :: lb).length → FreeAlgebra I) : ∑ n, f n = f ⟨0,
Nat.zero_lt_succ lb.length⟩ + ∑ n, f (Fin.succ n) := by
exact Fin.sum_univ_succAbove f ⟨0, Nat.zero_lt_succ lb.length⟩
rw [hf]
congr
rw [Finset.mul_sum]
congr
funext n
simp only [superCommuteTake, Fin.eta, List.get_eq_getElem, Algebra.smul_mul_assoc,
Algebra.mul_smul_comm, smul_smul, List.length_cons, Fin.val_succ, List.take_succ_cons,
List.getElem_cons_succ, List.drop_succ_cons]
congr 1
· rw [mul_comm, ← superCommuteCoef_append]
rfl
· simp only [← mul_assoc, mul_eq_mul_right_iff]
exact Or.inl (Or.inl (ofList_cons_eq_ofList (List.take (↑n) lb) b 1).symm)
2024-12-17 07:15:47 +00:00
lemma superCommute_ofList_ofList_superCommuteCoef {I : Type} (q : I → Fin 2) (la lb : List I) (xa xb : ) :
superCommute q (ofList la xa) (ofList lb xb) =
ofList la xa * ofList lb xb - superCommuteCoef q la lb • ofList lb xb * ofList la xa := by
rw [superCommute_ofList_ofList, superCommuteCoef]
by_cases hq : grade q la = 1 ∧ grade q lb = 1
· simp [hq, ofList_pair]
· simp [hq, ofList_pair]
abel
lemma ofList_ofList_superCommute {I : Type} (q : I → Fin 2) (la lb : List I) (xa xb : ) :
ofList la xa * ofList lb xb = superCommuteCoef q la lb • ofList lb xb * ofList la xa
+ superCommute q (ofList la xa) (ofList lb xb) := by
rw [superCommute_ofList_ofList_superCommuteCoef]
abel
lemma ofListM_ofList_superCommute' {I : Type}
(q : I → Fin 2) (l : List I) (r : List I) (x y : ) :
ofList r y * ofList l x = superCommuteCoef q l r • (ofList l x * ofList r y)
- superCommuteCoef q l r • superCommute q (ofList l x) (ofList r y) := by
nth_rewrite 2 [ofList_ofList_superCommute q]
rw [superCommuteCoef]
by_cases hq : grade q l = 1 ∧ grade q r = 1
· simp [hq, superCommuteCoef]
· simp [hq]
2024-12-15 12:42:50 +00:00
end
end Wick