PhysLean/HepLean/AnomalyCancellation/PureU1/LineInPlaneCond.lean

183 lines
6.4 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.PureU1.Basic
import HepLean.AnomalyCancellation.PureU1.Permutations
import HepLean.AnomalyCancellation.PureU1.VectorLike
import HepLean.AnomalyCancellation.PureU1.ConstAbs
import Mathlib.Tactic.Polyrith
import Mathlib.RepresentationTheory.Basic
/-!
# Line in plane condition
2024-05-20 00:19:22 +02:00
We say a `LinSol` satisfies the `line in plane` condition if for all distinct `i1`, `i2`, `i3` in
`Fin n`, we have
2024-07-12 11:23:02 -04:00
`S i1 = S i2` or `S i1 = - S i2` or `2 S i3 + S i1 + S i2 = 0`.
We look at various consequences of this.
The main reference for this material is
- https://arxiv.org/pdf/1912.04804.pdf
2024-05-20 00:19:22 +02:00
We will show that `n ≥ 4` the `line in plane` condition on solutions implies the
`constAbs` condition.
-/
namespace PureU1
open BigOperators
variable {n : }
/-- The proposition on three rationals to satisfy the `linInPlane` condition. -/
def LineInPlaneProp : × × → Prop := fun s =>
s.1 = s.2.1 s.1 = - s.2.1 2 * s.2.2 + s.1 + s.2.1 = 0
/-- The proposition on a `LinSol` to satisfy the `linInPlane` condition. -/
def LineInPlaneCond (S : (PureU1 (n)).LinSols) : Prop :=
∀ (i1 i2 i3 : Fin (n)) (_ : i1 ≠ i2) (_ : i2 ≠ i3) (_ : i1 ≠ i3),
LineInPlaneProp (S.val i1, (S.val i2, S.val i3))
lemma lineInPlaneCond_perm {S : (PureU1 (n)).LinSols} (hS : LineInPlaneCond S)
(M : (FamilyPermutations n).group) :
LineInPlaneCond ((FamilyPermutations n).linSolRep M S) := by
intro i1 i2 i3 h1 h2 h3
rw [FamilyPermutations_anomalyFreeLinear_apply, FamilyPermutations_anomalyFreeLinear_apply,
FamilyPermutations_anomalyFreeLinear_apply]
refine hS (M.invFun i1) (M.invFun i2) (M.invFun i3) ?_ ?_ ?_
all_goals simp_all only [ne_eq, Equiv.invFun_as_coe, EmbeddingLike.apply_eq_iff_eq,
not_false_eq_true]
lemma lineInPlaneCond_eq_last' {S : (PureU1 (n.succ.succ)).LinSols} (hS : LineInPlaneCond S)
2024-07-12 16:22:06 -04:00
(h : ¬ (S.val ((Fin.last n).castSucc))^2 = (S.val ((Fin.last n).succ))^2) :
(2 - n) * S.val (Fin.last (n + 1)) =
- (2 - n)* S.val (Fin.castSucc (Fin.last n)) := by
erw [sq_eq_sq_iff_eq_or_eq_neg] at h
rw [LineInPlaneCond] at hS
simp only [LineInPlaneProp] at hS
simp [not_or] at h
have h1 (i : Fin n) : S.val i.castSucc.castSucc =
2024-07-12 11:23:02 -04:00
- (S.val ((Fin.last n).castSucc) + (S.val ((Fin.last n).succ))) / 2 := by
have h1S := hS (Fin.last n).castSucc ((Fin.last n).succ) i.castSucc.castSucc
2024-05-06 14:55:22 -04:00
(by simp; rw [Fin.ext_iff]; simp)
(by simp; rw [Fin.ext_iff]; simp; omega)
(by simp; rw [Fin.ext_iff]; simp; omega)
simp_all
field_simp
linear_combination h1S
have h2 := pureU1_last S
rw [Fin.sum_univ_castSucc] at h2
simp [h1] at h2
field_simp at h2
linear_combination h2
lemma lineInPlaneCond_eq_last {S : (PureU1 (n.succ.succ.succ.succ.succ)).LinSols}
(hS : LineInPlaneCond S) : ConstAbsProp ((S.val ((Fin.last n.succ.succ.succ).castSucc)),
2024-04-18 10:27:57 -04:00
(S.val ((Fin.last n.succ.succ.succ).succ))) := by
rw [ConstAbsProp]
by_contra hn
have h := lineInPlaneCond_eq_last' hS hn
rw [sq_eq_sq_iff_eq_or_eq_neg] at hn
simp [or_not] at hn
2024-07-12 11:23:02 -04:00
have hx : ((2 : ) - ↑(n + 3)) ≠ 0 := by
rw [Nat.cast_add]
2024-04-18 10:27:57 -04:00
simp only [Nat.cast_ofNat, ne_eq]
apply Not.intro
intro a
linarith
2024-07-12 11:23:02 -04:00
have ht : S.val ((Fin.last n.succ.succ.succ).succ) =
- S.val ((Fin.last n.succ.succ.succ).castSucc) := by
rw [← mul_right_inj' hx]
simp [Nat.succ_eq_add_one]
simp at h
rw [h]
ring
simp_all
lemma linesInPlane_eq_sq {S : (PureU1 (n.succ.succ.succ.succ.succ)).LinSols}
(hS : LineInPlaneCond S) : ∀ (i j : Fin n.succ.succ.succ.succ.succ) (_ : i ≠ j),
ConstAbsProp (S.val i, S.val j) := by
have hneq : ((Fin.last n.succ.succ.succ).castSucc) ≠ ((Fin.last n.succ.succ.succ).succ) := by
simp [Fin.ext_iff]
refine Prop_two ConstAbsProp hneq ?_
intro M
exact lineInPlaneCond_eq_last (lineInPlaneCond_perm hS M)
theorem linesInPlane_constAbs {S : (PureU1 (n.succ.succ.succ.succ.succ)).LinSols}
(hS : LineInPlaneCond S) : ConstAbs S.val := by
intro i j
by_cases hij : i ≠ j
exact linesInPlane_eq_sq hS i j hij
simp at hij
rw [hij]
lemma linesInPlane_four (S : (PureU1 4).Sols) (hS : LineInPlaneCond S.1.1) :
2024-07-12 11:23:02 -04:00
ConstAbsProp (S.val (0 : Fin 4), S.val (1 : Fin 4)) := by
simp [ConstAbsProp]
by_contra hn
have hLin := pureU1_linear S.1.1
have hcube := pureU1_cube S
simp at hLin hcube
rw [Fin.sum_univ_four] at hLin hcube
rw [sq_eq_sq_iff_eq_or_eq_neg] at hn
simp [not_or] at hn
have l012 := hS 0 1 2 (by simp) (by simp) (by simp)
have l013 := hS 0 1 3 (by simp) (by simp) (by simp)
have l023 := hS 0 2 3 (by simp) (by simp) (by simp)
simp_all [LineInPlaneProp]
2024-07-12 11:23:02 -04:00
have h1 : S.val (2 : Fin 4) = S.val (3 : Fin 4) := by
linear_combination l012 / 2 + -1 * l013 / 2
by_cases h2 : S.val (0 : Fin 4) = S.val (2 : Fin 4)
simp_all
have h3 : S.val (1 : Fin 4) = - 3 * S.val (2 : Fin 4) := by
linear_combination l012 + 3 * h1
rw [← h1, h3] at hcube
have h4 : S.val (2 : Fin 4) ^ 3 = 0 := by
linear_combination -1 * hcube / 24
simp at h4
simp_all
by_cases h3 : S.val (0 : Fin 4) = - S.val (2 : Fin 4)
simp_all
have h4 : S.val (1 : Fin 4) = - S.val (2 : Fin 4) := by
linear_combination l012 + h1
simp_all
simp_all
have h4 : S.val (0 : Fin 4) = - 3 * S.val (3 : Fin 4) := by
linear_combination l023
have h5 : S.val (1 : Fin 4) = S.val (3 : Fin 4) := by
linear_combination l013 - 1 * h4
rw [h4, h5] at hcube
have h6 : S.val (3 : Fin 4) ^ 3 = 0 := by
linear_combination -1 * hcube / 24
simp at h6
simp_all
lemma linesInPlane_eq_sq_four {S : (PureU1 4).Sols}
(hS : LineInPlaneCond S.1.1) : ∀ (i j : Fin 4) (_ : i ≠ j),
ConstAbsProp (S.val i, S.val j) := by
refine Prop_two ConstAbsProp (by simp : (0 : Fin 4) ≠ 1) ?_
intro M
let S' := (FamilyPermutations 4).solAction.toFun S M
2024-07-12 11:23:02 -04:00
have hS' : LineInPlaneCond S'.1.1 :=
(lineInPlaneCond_perm hS M)
exact linesInPlane_four S' hS'
lemma linesInPlane_constAbs_four (S : (PureU1 4).Sols)
(hS : LineInPlaneCond S.1.1) : ConstAbs S.val := by
intro i j
by_cases hij : i ≠ j
exact linesInPlane_eq_sq_four hS i j hij
simp at hij
rw [hij]
theorem linesInPlane_constAbs_AF (S : (PureU1 (n.succ.succ.succ.succ)).Sols)
(hS : LineInPlaneCond S.1.1) : ConstAbs S.val := by
induction n
exact linesInPlane_constAbs_four S hS
exact linesInPlane_constAbs hS
end PureU1