PhysLean/HepLean/Tensors/Tree/Elab.lean

360 lines
13 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.Basic
import Lean.Elab.Term
2024-10-12 09:00:08 +00:00
import HepLean.Tensors.Tree.Dot
2024-10-16 16:38:36 +00:00
import HepLean.Tensors.ComplexLorentz.Basic
/-!
## Elaboration of tensor trees
2024-10-08 07:26:23 +00:00
This file turns tensor expressions into tensor trees.
-/
open Lean
open Lean.Elab.Term
open Lean
open Lean.Meta
open Lean.Elab
open Lean.Elab.Term
2024-10-08 05:53:16 +00:00
open Lean Meta Elab Tactic
2024-10-12 09:00:08 +00:00
open IndexNotation
namespace TensorTree
2024-10-08 05:53:16 +00:00
/-!
## Indexies
-/
2024-10-08 07:52:55 +00:00
/-- A syntax category for indices of tensor expressions. -/
2024-10-08 05:53:16 +00:00
declare_syntax_cat indexExpr
2024-10-08 07:52:55 +00:00
/-- A basic index is a ident. -/
2024-10-08 05:53:16 +00:00
syntax ident : indexExpr
2024-10-08 07:52:55 +00:00
/-- An index can be a num, which will be used to evaluate the tensor. -/
2024-10-08 05:53:16 +00:00
syntax num : indexExpr
2024-10-08 07:52:55 +00:00
/-- Notation to discribe the jiggle of a tensor index. -/
2024-10-08 05:53:16 +00:00
syntax "τ(" ident ")" : indexExpr
2024-10-08 07:52:55 +00:00
/-- Bool which is ture if an index is a num. -/
2024-10-08 05:53:16 +00:00
def indexExprIsNum (stx : Syntax) : Bool :=
match stx with
| `(indexExpr|$_:num) => true
| _ => false
2024-10-08 07:52:55 +00:00
/-- If an index is a num - the undelrying natural number. -/
2024-10-08 05:53:16 +00:00
def indexToNum (stx : Syntax) : TermElabM Nat :=
match stx with
| `(indexExpr|$a:num) =>
match a.raw.isNatLit? with
| some n => return n
2024-10-08 07:52:55 +00:00
| none => throwError "Expected a natural number literal."
2024-10-08 05:53:16 +00:00
| _ =>
2024-10-08 07:52:55 +00:00
throwError "Unsupported tensor expression syntax in indexToNum: {stx}"
2024-10-08 05:53:16 +00:00
2024-10-08 07:52:55 +00:00
/-- When an index is not a num, the corresponding ident. -/
2024-10-08 07:26:23 +00:00
def indexToIdent (stx : Syntax) : TermElabM Ident :=
match stx with
| `(indexExpr|$a:ident) => return a
| `(indexExpr| τ($a:ident)) => return a
| _ =>
2024-10-08 07:52:55 +00:00
throwError "Unsupported tensor expression syntax in indexToIdent: {stx}"
2024-10-08 07:26:23 +00:00
2024-10-08 07:52:55 +00:00
/-- Takes a pair ``a b : × TSyntax `indexExpr``. If `a.1 < b.1` and `a.2 = b.2` then
outputs `some (a.1, b.1)`, otherwise `none`. -/
2024-10-08 07:26:23 +00:00
def indexPosEq (a b : × TSyntax `indexExpr) : TermElabM (Option ( × )) := do
let a' ← indexToIdent a.2
let b' ← indexToIdent b.2
if a.1 < b.1 ∧ Lean.TSyntax.getId a' = Lean.TSyntax.getId b' then
return some (a.1, b.1)
else
return none
2024-10-08 07:52:55 +00:00
/-- Bool which is true if an index is of the form τ(i) that is, to be dualed. -/
2024-10-08 05:53:16 +00:00
def indexToDual (stx : Syntax) : Bool :=
match stx with
| `(indexExpr| τ($_)) => true
| _ => false
2024-10-16 16:38:36 +00:00
2024-10-08 05:53:16 +00:00
/-!
## Tensor expressions
-/
2024-10-08 07:52:55 +00:00
/-- A syntax category for tensor expressions. -/
declare_syntax_cat tensorExpr
2024-10-08 07:52:55 +00:00
/-- The syntax for a tensor node. -/
2024-10-08 07:26:23 +00:00
syntax term "|" (ppSpace indexExpr)* : tensorExpr
2024-10-08 07:52:55 +00:00
/-- The syntax for tensor prod two tensor nodes. -/
syntax tensorExpr "⊗" tensorExpr : tensorExpr
2024-10-08 05:53:16 +00:00
/-- The syntax for tensor addition. -/
syntax tensorExpr "+" tensorExpr : tensorExpr
2024-10-08 07:52:55 +00:00
/-- Allowing brackets to be used in a tensor expression. -/
2024-10-08 05:53:16 +00:00
syntax "(" tensorExpr ")" : tensorExpr
2024-10-08 15:47:53 +00:00
/-- Scalar multiplication for tensors. -/
syntax term "•" tensorExpr : tensorExpr
namespace TensorNode
2024-10-08 05:53:16 +00:00
/-!
## For tensor nodes.
2024-10-08 07:26:23 +00:00
The operations are done in the following order:
- evaluation.
- dualization.
- contraction.
We also want to ensure the number of indices is correct.
2024-10-08 05:53:16 +00:00
-/
2024-10-08 07:26:23 +00:00
/-- The indices of a tensor node. Before contraction, dualisation, and evaluation. -/
partial def getIndices (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
2024-10-08 05:53:16 +00:00
match stx with
2024-10-08 07:26:23 +00:00
| `(tensorExpr| $_:term | $[$args]*) => do
2024-10-08 05:53:16 +00:00
let indices ← args.toList.mapM fun arg => do
match arg with
| `(indexExpr|$t:indexExpr) => pure t
return indices
| _ =>
2024-10-08 07:52:55 +00:00
throwError "Unsupported tensor expression syntax in getIndicesNode: {stx}"
2024-10-08 05:53:16 +00:00
/-- Uses the structure of the tensor to get the number of indices. -/
def getNoIndicesExact (stx : Syntax) : TermElabM := do
let expr ← elabTerm stx none
let type ← inferType expr
2024-10-16 16:38:36 +00:00
let strType := toString type
let n := (String.splitOn strType "CategoryTheory.MonoidalCategoryStruct.tensorObj").length
match n with
| 1 =>
match type with
| Expr.app _ (Expr.app _ (Expr.app _ c)) =>
let typeC ← inferType c
match typeC with
| Expr.forallE _ (Expr.app _ (Expr.app (Expr.app _ (Expr.lit (Literal.natVal n))) _)) _ _ =>
return n
| _ => throwError "Could not extract number of indices from tensor (getNoIndicesExact). "
| _ => return 1
| k => return k
/-- The construction of an expression corresponding to the type of a given string once parsed. -/
def stringToType (str : String) : TermElabM Expr := do
let env ← getEnv
let stx := Parser.runParserCategory env `term str
match stx with
| Except.error _ => throwError "Could not create type from string (stringToType). "
| Except.ok stx => elabTerm stx none
/-- The syntax associated with a terminal node of a tensor tree. -/
def termNodeSyntax (T : Term) : TermElabM Term := do
let expr ← elabTerm T none
let type ← inferType expr
let strType := toString type
let n := (String.splitOn strType "CategoryTheory.MonoidalCategoryStruct.tensorObj").length
let const := (String.splitOn strType "Quiver.Hom").length
match n, const with
| 1, 1 =>
match type with
| Expr.app _ (Expr.app _ (Expr.app _ c)) =>
let typeC ← inferType c
match typeC with
| Expr.forallE _ (Expr.app _ (Expr.app (Expr.app _ (Expr.lit (Literal.natVal _))) _)) _ _ =>
return Syntax.mkApp (mkIdent ``TensorTree.tensorNode) #[T]
| _ => throwError "Could not create terminal node syntax (termNodeSyntax). "
| _ => return Syntax.mkApp (mkIdent ``TensorTree.vecNode) #[T]
| 2, 1 =>
2024-10-16 16:42:20 +00:00
match ← isDefEq type (← stringToType
"CoeSort.coe leftHanded ⊗ CoeSort.coe Lorentz.complexContr") with
2024-10-16 16:38:36 +00:00
| true => return Syntax.mkApp (mkIdent ``TensorTree.twoNodeE)
2024-10-16 16:42:20 +00:00
#[mkIdent ``Fermion.complexLorentzTensor,
mkIdent ``Fermion.Color.upL, mkIdent ``Fermion.Color.up, T]
2024-10-16 16:38:36 +00:00
| _ => return Syntax.mkApp (mkIdent ``TensorTree.twoNode) #[T]
| 3, 1 => return Syntax.mkApp (mkIdent ``TensorTree.threeNode) #[T]
| 1, 2 => return Syntax.mkApp (mkIdent ``TensorTree.constVecNode) #[T]
| 2, 2 =>
match ← isDefEq type (← stringToType
"𝟙_ (Rep SL(2, )) ⟶ Lorentz.complexCo ⊗ Lorentz.complexCo") with
| true =>
println! "here"
return Syntax.mkApp (mkIdent ``TensorTree.constTwoNodeE) #[
mkIdent ``Fermion.complexLorentzTensor, mkIdent ``Fermion.Color.down,
2024-10-16 16:42:20 +00:00
mkIdent ``Fermion.Color.down, T]
2024-10-16 16:38:36 +00:00
| _ => return Syntax.mkApp (mkIdent ``TensorTree.constTwoNode) #[T]
| 3, 2 =>
/- Specific types. -/
match ← isDefEq type (← stringToType
"𝟙_ (Rep SL(2, )) ⟶ Lorentz.complexContr ⊗ Fermion.leftHanded ⊗ Fermion.rightHanded") with
| true =>
return Syntax.mkApp (mkIdent ``TensorTree.constThreeNodeE) #[
mkIdent ``Fermion.complexLorentzTensor, mkIdent ``Fermion.Color.up,
mkIdent ``Fermion.Color.upL, mkIdent ``Fermion.Color.upR, T]
| _ =>
return Syntax.mkApp (mkIdent ``TensorTree.constThreeNode) #[T]
| _, _ => throwError "Could not create terminal node syntax (termNodeSyntax). "
2024-10-08 07:26:23 +00:00
/-- The positions in getIndicesNode which get evaluated, and the value they take. -/
2024-10-08 05:53:16 +00:00
partial def getEvalPos (stx : Syntax) : TermElabM (List ( × )) := do
let ind ← getIndices stx
2024-10-08 05:53:16 +00:00
let indEnum := ind.enum
let evals := indEnum.filter (fun x => indexExprIsNum x.2)
let evals2 ← (evals.mapM (fun x => indexToNum x.2))
return List.zip (evals.map (fun x => x.1)) evals2
2024-10-08 07:52:55 +00:00
/-- For each element of `l : List ( × )` applies `TensorTree.eval` to the given term. -/
2024-10-08 07:26:23 +00:00
def evalSyntax (l : List ( × )) (T : Term) : Term :=
l.foldl (fun T' (x1, x2) => Syntax.mkApp (mkIdent ``TensorTree.eval)
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x2), T']) T
2024-10-08 07:52:55 +00:00
/-- The pairs of positions in getIndicesNode which get contracted. -/
2024-10-08 07:26:23 +00:00
partial def getContrPos (stx : Syntax) : TermElabM (List ( × )) := do
let ind ← getIndices stx
2024-10-08 07:26:23 +00:00
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
let indEnum := indFilt.enum
let bind := List.bind indEnum (fun a => indEnum.map (fun b => (a, b)))
let filt ← bind.filterMapM (fun x => indexPosEq x.1 x.2)
2024-10-08 07:52:55 +00:00
if ¬ ((filt.map Prod.fst).Nodup ∧ (filt.map Prod.snd).Nodup) then
2024-10-08 05:53:16 +00:00
throwError "To many contractions"
2024-10-08 07:26:23 +00:00
return filt
2024-10-08 05:53:16 +00:00
2024-10-08 07:52:55 +00:00
/-- The list of indices after contraction. -/
2024-10-08 07:26:23 +00:00
def withoutContr (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
let ind ← getIndices stx
2024-10-08 07:26:23 +00:00
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
return ind.filter (fun x => indFilt.count x ≤ 1)
2024-10-08 05:53:16 +00:00
2024-10-08 07:52:55 +00:00
/-- For each element of `l : List ( × )` applies `TensorTree.contr` to the given term. -/
2024-10-08 07:26:23 +00:00
def contrSyntax (l : List ( × )) (T : Term) : Term :=
l.foldl (fun T' (x0, x1) => Syntax.mkApp (mkIdent ``TensorTree.contr)
2024-10-16 16:42:20 +00:00
#[Syntax.mkNumLit (toString x1),
Syntax.mkNumLit (toString x0), mkIdent ``rfl, T']) T
2024-10-08 07:26:23 +00:00
2024-10-08 11:55:06 +00:00
/-- Creates the syntax associated with a tensor node. -/
def syntaxFull (stx : Syntax) : TermElabM Term := do
2024-10-08 05:53:16 +00:00
match stx with
2024-10-08 07:26:23 +00:00
| `(tensorExpr| $T:term | $[$args]*) => do
2024-10-08 11:55:06 +00:00
let indices ← getIndices stx
2024-10-08 11:56:31 +00:00
let rawIndex ← getNoIndicesExact T
2024-10-08 11:55:06 +00:00
if indices.length ≠ rawIndex then
throwError "The number of indices does not match the tensor {T}."
2024-10-16 16:38:36 +00:00
let tensorNodeSyntax ← termNodeSyntax T
2024-10-08 07:26:23 +00:00
let evalSyntax := evalSyntax (← getEvalPos stx) tensorNodeSyntax
2024-10-16 16:38:36 +00:00
let contrSyntax := contrSyntax (← getContrPos stx) evalSyntax
return contrSyntax
| _ =>
throwError "Unsupported tensor expression syntax in elaborateTensorNode: {stx}"
end TensorNode
namespace ProdNode
/-!
## For product nodes.
For a product node we can take the tensor product, and then contract the indices.
-/
2024-10-08 11:55:06 +00:00
/-- Gets the indices associated with a product node. -/
partial def getIndices (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
match stx with
| `(tensorExpr| $_:term | $[$args]*) => do
return (← TensorNode.withoutContr stx)
| `(tensorExpr| $a:tensorExpr ⊗ $b:tensorExpr) => do
let indicesA ← getIndices a
let indicesB ← getIndices b
return indicesA ++ indicesB
| `(tensorExpr| ($a:tensorExpr)) => do
return (← getIndices a)
| _ =>
throwError "Unsupported tensor expression syntax in getIndicesProd: {stx}"
/-- The pairs of positions in getIndicesNode which get contracted. -/
partial def getContrPos (stx : Syntax) : TermElabM (List ( × )) := do
let ind ← getIndices stx
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
let indEnum := indFilt.enum
let bind := List.bind indEnum (fun a => indEnum.map (fun b => (a, b)))
let filt ← bind.filterMapM (fun x => indexPosEq x.1 x.2)
if ¬ ((filt.map Prod.fst).Nodup ∧ (filt.map Prod.snd).Nodup) then
throwError "To many contractions"
return filt
/-- The list of indices after contraction. -/
def withoutContr (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
let ind ← getIndices stx
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
return ind.filter (fun x => indFilt.count x ≤ 1)
/-- For each element of `l : List ( × )` applies `TensorTree.contr` to the given term. -/
def contrSyntax (l : List ( × )) (T : Term) : Term :=
l.foldl (fun T' (x0, x1) => Syntax.mkApp (mkIdent ``TensorTree.contr)
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x0), mkIdent ``rfl, T']) T
2024-10-08 11:55:06 +00:00
/-- The syntax associated with a product of tensors. -/
def prodSyntax (T1 T2 : Term) : Term :=
Syntax.mkApp (mkIdent ``TensorTree.prod) #[T1, T2]
2024-10-08 11:55:06 +00:00
/-- The full term taking tensor syntax into a term for products and single tensor nodes. -/
partial def syntaxFull (stx : Syntax) : TermElabM Term := do
match stx with
| `(tensorExpr| $_:term | $[$args]*) => TensorNode.syntaxFull stx
| `(tensorExpr| $a:tensorExpr ⊗ $b:tensorExpr) => do
let prodSyntax := prodSyntax (← syntaxFull a) (← syntaxFull b)
let contrSyntax := contrSyntax (← getContrPos stx) prodSyntax
return contrSyntax
| `(tensorExpr| ($a:tensorExpr)) => do
return (← syntaxFull a)
2024-10-08 05:53:16 +00:00
| _ =>
2024-10-08 07:52:55 +00:00
throwError "Unsupported tensor expression syntax in elaborateTensorNode: {stx}"
2024-10-08 05:53:16 +00:00
/-- An elaborator for tensor nodes. This is to be generalized. -/
def elaborateTensorNode (stx : Syntax) : TermElabM Expr := do
let tensorExpr ← elabTerm (← syntaxFull stx) none
return tensorExpr
2024-10-08 07:52:55 +00:00
/-- Syntax turning a tensor expression into a term. -/
2024-10-08 07:26:23 +00:00
syntax (name := tensorExprSyntax) "{" tensorExpr "}ᵀ" : term
2024-10-08 05:53:16 +00:00
2024-10-08 07:26:23 +00:00
elab_rules (kind:=tensorExprSyntax) : term
| `(term| {$e:tensorExpr}ᵀ) => do
let tensorTree ← elaborateTensorNode e
return tensorTree
2024-10-08 05:53:16 +00:00
variable {S : TensorStruct} {c4 : Fin 4 → S.C} (T4 : S.F.obj (OverColor.mk c4))
{c5 : Fin 5 → S.C} (T5 : S.F.obj (OverColor.mk c5)) (a : S.k)
variable (𝓣 : TensorTree S c4)
2024-10-08 11:55:06 +00:00
/-!
2024-10-08 11:55:06 +00:00
# Checks
2024-10-08 11:55:06 +00:00
-/
2024-10-08 11:55:06 +00:00
/-
#tensor_dot {T4 | i j τ(l) d ⊗ T5 | i j k m m}ᵀ.dot
2024-10-08 11:56:31 +00:00
#check {T4 | i j l d ⊗ T5 | i j k a b}ᵀ
2024-10-08 11:55:06 +00:00
#check {(T4 | i j l a ⊗ T5 | i j k c d) ⊗ T5 | i1 i2 i3 e f}ᵀ
-/
end ProdNode
end TensorTree