2025-01-20 15:17:48 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
2025-02-03 11:05:43 +00:00
|
|
|
|
import HepLean.PerturbationTheory.Algebras.FieldOpFreeAlgebra.Basic
|
|
|
|
|
import HepLean.PerturbationTheory.Algebras.FieldOpFreeAlgebra.Grading
|
2025-01-20 15:17:48 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
# Super Commute
|
|
|
|
|
-/
|
|
|
|
|
|
2025-01-21 06:11:47 +00:00
|
|
|
|
namespace FieldSpecification
|
|
|
|
|
variable {𝓕 : FieldSpecification}
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
namespace FieldOpFreeAlgebra
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
/-!
|
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
## The super commutor on the FieldOpFreeAlgebra.
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
open FieldStatistic
|
|
|
|
|
|
|
|
|
|
/-- The super commutor on the creation and annihlation algebra. For two bosonic operators
|
|
|
|
|
or a bosonic and fermionic operator this corresponds to the usual commutator
|
|
|
|
|
whilst for two fermionic operators this corresponds to the anti-commutator. -/
|
2025-02-03 11:05:43 +00:00
|
|
|
|
noncomputable def superCommuteF : 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra :=
|
2025-01-20 15:17:48 +00:00
|
|
|
|
Basis.constr ofCrAnListBasis ℂ fun φs =>
|
|
|
|
|
Basis.constr ofCrAnListBasis ℂ fun φs' =>
|
|
|
|
|
ofCrAnList (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList (φs' ++ φs)
|
|
|
|
|
|
|
|
|
|
/-- The super commutor on the creation and annihlation algebra. For two bosonic operators
|
|
|
|
|
or a bosonic and fermionic operator this corresponds to the usual commutator
|
|
|
|
|
whilst for two fermionic operators this corresponds to the anti-commutator. -/
|
2025-02-03 11:05:43 +00:00
|
|
|
|
scoped[FieldSpecification.FieldOpFreeAlgebra] notation "[" φs "," φs' "]ₛca" => superCommuteF φs φs'
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-01-22 05:51:52 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## The super commutor of different types of elements
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma superCommuteF_ofCrAnList_ofCrAnList (φs φs' : List 𝓕.CrAnStates) :
|
2025-01-23 15:06:11 +00:00
|
|
|
|
[ofCrAnList φs, ofCrAnList φs']ₛca =
|
2025-01-20 15:17:48 +00:00
|
|
|
|
ofCrAnList (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList (φs' ++ φs) := by
|
|
|
|
|
rw [← ofListBasis_eq_ofList, ← ofListBasis_eq_ofList]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
simp only [superCommuteF, Basis.constr_basis]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma superCommuteF_ofCrAnState_ofCrAnState (φ φ' : 𝓕.CrAnStates) :
|
2025-01-23 15:06:11 +00:00
|
|
|
|
[ofCrAnState φ, ofCrAnState φ']ₛca =
|
2025-01-22 05:51:52 +00:00
|
|
|
|
ofCrAnState φ * ofCrAnState φ' - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofCrAnState φ' * ofCrAnState φ := by
|
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofCrAnList, ofCrAnList_append]
|
2025-01-22 05:51:52 +00:00
|
|
|
|
congr
|
|
|
|
|
rw [ofCrAnList_append]
|
|
|
|
|
rw [FieldStatistic.ofList_singleton, FieldStatistic.ofList_singleton, smul_mul_assoc]
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma superCommuteF_ofCrAnList_ofStatesList (φcas : List 𝓕.CrAnStates) (φs : List 𝓕.States) :
|
2025-01-23 15:06:11 +00:00
|
|
|
|
[ofCrAnList φcas, ofStateList φs]ₛca = ofCrAnList φcas * ofStateList φs -
|
2025-01-20 15:17:48 +00:00
|
|
|
|
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofStateList φs * ofCrAnList φcas := by
|
|
|
|
|
conv_lhs => rw [ofStateList_sum]
|
|
|
|
|
rw [map_sum]
|
|
|
|
|
conv_lhs =>
|
|
|
|
|
enter [2, x]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofCrAnList, CrAnSection.statistics_eq_state_statistics,
|
2025-01-20 15:17:48 +00:00
|
|
|
|
ofCrAnList_append, ofCrAnList_append]
|
|
|
|
|
rw [Finset.sum_sub_distrib, ← Finset.mul_sum, ← Finset.smul_sum,
|
|
|
|
|
← Finset.sum_mul, ← ofStateList_sum]
|
|
|
|
|
simp
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma superCommuteF_ofStateList_ofStatesList (φ : List 𝓕.States) (φs : List 𝓕.States) :
|
2025-01-23 15:06:11 +00:00
|
|
|
|
[ofStateList φ, ofStateList φs]ₛca = ofStateList φ * ofStateList φs -
|
2025-01-20 15:17:48 +00:00
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs * ofStateList φ := by
|
|
|
|
|
conv_lhs => rw [ofStateList_sum]
|
|
|
|
|
simp only [map_sum, LinearMap.coeFn_sum, Finset.sum_apply, instCommGroup.eq_1,
|
|
|
|
|
Algebra.smul_mul_assoc]
|
|
|
|
|
conv_lhs =>
|
|
|
|
|
enter [2, x]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofStatesList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [instCommGroup.eq_1, CrAnSection.statistics_eq_state_statistics,
|
|
|
|
|
Algebra.smul_mul_assoc, Finset.sum_sub_distrib]
|
|
|
|
|
rw [← Finset.sum_mul, ← Finset.smul_sum, ← Finset.mul_sum, ← ofStateList_sum]
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma superCommuteF_ofState_ofStatesList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
2025-01-23 15:06:11 +00:00
|
|
|
|
[ofState φ, ofStateList φs]ₛca = ofState φ * ofStateList φs -
|
2025-01-20 15:17:48 +00:00
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs * ofState φ := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofStateList_singleton, superCommuteF_ofStateList_ofStatesList, ofStateList_singleton]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma superCommuteF_ofStateList_ofState (φs : List 𝓕.States) (φ : 𝓕.States) :
|
2025-01-23 15:06:11 +00:00
|
|
|
|
[ofStateList φs, ofState φ]ₛca = ofStateList φs * ofState φ -
|
2025-01-20 15:17:48 +00:00
|
|
|
|
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofStateList_singleton, superCommuteF_ofStateList_ofStatesList, ofStateList_singleton]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp
|
|
|
|
|
|
2025-01-30 06:24:17 +00:00
|
|
|
|
lemma superCommuteF_anPartF_crPartF (φ φ' : 𝓕.States) :
|
2025-01-30 07:16:19 +00:00
|
|
|
|
[anPartF φ, crPartF φ']ₛca = anPartF φ * crPartF φ' -
|
2025-01-30 06:24:17 +00:00
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPartF φ' * anPartF φ := by
|
2025-01-20 15:17:48 +00:00
|
|
|
|
match φ, φ' with
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.inAsymp φ, _ =>
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| _, States.outAsymp φ =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [crPartF_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
|
2025-01-20 15:17:48 +00:00
|
|
|
|
sub_self]
|
|
|
|
|
| States.position φ, States.position φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [anPartF_position, crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics, ← ofCrAnList_append]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.outAsymp φ, States.position φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [anPartF_posAsymp, crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics, ← ofCrAnList_append]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.position φ, States.inAsymp φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [anPartF_position, crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [List.singleton_append, instCommGroup.eq_1, crAnStatistics,
|
|
|
|
|
FieldStatistic.ofList_singleton, Function.comp_apply, crAnStatesToStates_prod, ←
|
|
|
|
|
ofCrAnList_append]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.outAsymp φ, States.inAsymp φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [anPartF_posAsymp, crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics, ← ofCrAnList_append]
|
|
|
|
|
|
2025-01-30 06:24:17 +00:00
|
|
|
|
lemma superCommuteF_crPartF_anPartF (φ φ' : 𝓕.States) :
|
2025-01-30 07:16:19 +00:00
|
|
|
|
[crPartF φ, anPartF φ']ₛca = crPartF φ * anPartF φ' -
|
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * crPartF φ := by
|
2025-01-20 15:17:48 +00:00
|
|
|
|
match φ, φ' with
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.outAsymp φ, _ =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [crPartF_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
|
2025-01-20 15:17:48 +00:00
|
|
|
|
mul_zero, sub_self]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| _, States.inAsymp φ =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [anPartF_negAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
|
2025-01-20 15:17:48 +00:00
|
|
|
|
sub_self]
|
|
|
|
|
| States.position φ, States.position φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [crPartF_position, anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics, ← ofCrAnList_append]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.position φ, States.outAsymp φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [crPartF_position, anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics, ← ofCrAnList_append]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.inAsymp φ, States.position φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [crPartF_negAsymp, anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics, ← ofCrAnList_append]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.inAsymp φ, States.outAsymp φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [crPartF_negAsymp, anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics, ← ofCrAnList_append]
|
|
|
|
|
|
2025-01-30 06:24:17 +00:00
|
|
|
|
lemma superCommuteF_crPartF_crPartF (φ φ' : 𝓕.States) :
|
2025-01-30 07:16:19 +00:00
|
|
|
|
[crPartF φ, crPartF φ']ₛca = crPartF φ * crPartF φ' -
|
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPartF φ' * crPartF φ := by
|
2025-01-20 15:17:48 +00:00
|
|
|
|
match φ, φ' with
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.outAsymp φ, _ =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [crPartF_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
|
2025-01-20 15:17:48 +00:00
|
|
|
|
mul_zero, sub_self]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| _, States.outAsymp φ =>
|
2025-01-30 11:08:10 +00:00
|
|
|
|
simp only [crPartF_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
|
|
|
|
|
sub_self]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
| States.position φ, States.position φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics, ← ofCrAnList_append]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.position φ, States.inAsymp φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [crPartF_position, crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics, ← ofCrAnList_append]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.inAsymp φ, States.position φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [crPartF_negAsymp, crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics, ← ofCrAnList_append]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.inAsymp φ, States.inAsymp φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics, ← ofCrAnList_append]
|
|
|
|
|
|
2025-01-30 06:24:17 +00:00
|
|
|
|
lemma superCommuteF_anPartF_anPartF (φ φ' : 𝓕.States) :
|
|
|
|
|
[anPartF φ, anPartF φ']ₛca =
|
2025-01-30 07:16:19 +00:00
|
|
|
|
anPartF φ * anPartF φ' - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * anPartF φ := by
|
2025-01-20 15:17:48 +00:00
|
|
|
|
match φ, φ' with
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.inAsymp φ, _ =>
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| _, States.inAsymp φ =>
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp
|
|
|
|
|
| States.position φ, States.position φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics, ← ofCrAnList_append]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.position φ, States.outAsymp φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [anPartF_position, anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics, ← ofCrAnList_append]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.outAsymp φ, States.position φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [anPartF_posAsymp, anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics, ← ofCrAnList_append]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.outAsymp φ, States.outAsymp φ' =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics, ← ofCrAnList_append]
|
|
|
|
|
|
2025-01-30 06:24:17 +00:00
|
|
|
|
lemma superCommuteF_crPartF_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
|
|
|
|
[crPartF φ, ofStateList φs]ₛca =
|
|
|
|
|
crPartF φ * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs *
|
|
|
|
|
crPartF φ := by
|
2025-01-20 15:17:48 +00:00
|
|
|
|
match φ with
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.inAsymp φ =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics]
|
|
|
|
|
| States.position φ =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.outAsymp φ =>
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp
|
|
|
|
|
|
2025-01-30 06:24:17 +00:00
|
|
|
|
lemma superCommuteF_anPartF_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
|
|
|
|
[anPartF φ, ofStateList φs]ₛca =
|
|
|
|
|
anPartF φ * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) •
|
|
|
|
|
ofStateList φs * anPartF φ := by
|
2025-01-20 15:17:48 +00:00
|
|
|
|
match φ with
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.inAsymp φ =>
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp
|
|
|
|
|
| States.position φ =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics]
|
2025-01-23 10:46:50 +00:00
|
|
|
|
| States.outAsymp φ =>
|
2025-01-30 06:24:17 +00:00
|
|
|
|
simp only [anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [crAnStatistics]
|
|
|
|
|
|
2025-01-30 06:24:17 +00:00
|
|
|
|
lemma superCommuteF_crPartF_ofState (φ φ' : 𝓕.States) :
|
|
|
|
|
[crPartF φ, ofState φ']ₛca =
|
|
|
|
|
crPartF φ * ofState φ' -
|
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * crPartF φ := by
|
|
|
|
|
rw [← ofStateList_singleton, superCommuteF_crPartF_ofStateList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp
|
|
|
|
|
|
2025-01-30 06:24:17 +00:00
|
|
|
|
lemma superCommuteF_anPartF_ofState (φ φ' : 𝓕.States) :
|
|
|
|
|
[anPartF φ, ofState φ']ₛca =
|
|
|
|
|
anPartF φ * ofState φ' -
|
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * anPartF φ := by
|
|
|
|
|
rw [← ofStateList_singleton, superCommuteF_anPartF_ofStateList]
|
2025-01-22 05:51:52 +00:00
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
/-!
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
## Mul equal superCommuteF
|
2025-01-22 05:51:52 +00:00
|
|
|
|
|
|
|
|
|
Lemmas which rewrite a multiplication of two elements of the algebra as their commuted
|
|
|
|
|
multiplication with a sign plus the super commutor.
|
|
|
|
|
|
|
|
|
|
-/
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma ofCrAnList_mul_ofCrAnList_eq_superCommuteF (φs φs' : List 𝓕.CrAnStates) :
|
2025-01-22 05:51:52 +00:00
|
|
|
|
ofCrAnList φs * ofCrAnList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList φs' * ofCrAnList φs
|
2025-01-23 15:06:11 +00:00
|
|
|
|
+ [ofCrAnList φs, ofCrAnList φs']ₛca := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-22 05:51:52 +00:00
|
|
|
|
simp [ofCrAnList_append]
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma ofCrAnState_mul_ofCrAnList_eq_superCommuteF (φ : 𝓕.CrAnStates) (φs' : List 𝓕.CrAnStates) :
|
2025-01-22 05:51:52 +00:00
|
|
|
|
ofCrAnState φ * ofCrAnList φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofCrAnList φs' * ofCrAnState φ
|
2025-01-23 15:06:11 +00:00
|
|
|
|
+ [ofCrAnState φ, ofCrAnList φs']ₛca := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ofCrAnList_mul_ofCrAnList_eq_superCommuteF]
|
2025-01-22 05:51:52 +00:00
|
|
|
|
simp
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma ofStateList_mul_ofStateList_eq_superCommuteF (φs φs' : List 𝓕.States) :
|
2025-01-22 05:51:52 +00:00
|
|
|
|
ofStateList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofStateList φs
|
2025-01-23 15:06:11 +00:00
|
|
|
|
+ [ofStateList φs, ofStateList φs']ₛca := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofStateList_ofStatesList]
|
2025-01-22 05:51:52 +00:00
|
|
|
|
simp
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma ofState_mul_ofStateList_eq_superCommuteF (φ : 𝓕.States) (φs' : List 𝓕.States) :
|
2025-01-22 05:51:52 +00:00
|
|
|
|
ofState φ * ofStateList φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofStateList φs' * ofState φ
|
2025-01-23 15:06:11 +00:00
|
|
|
|
+ [ofState φ, ofStateList φs']ₛca := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofState_ofStatesList]
|
2025-01-22 05:51:52 +00:00
|
|
|
|
simp
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma ofStateList_mul_ofState_eq_superCommuteF (φs : List 𝓕.States) (φ : 𝓕.States) :
|
2025-01-22 05:51:52 +00:00
|
|
|
|
ofStateList φs * ofState φ = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs
|
2025-01-23 15:06:11 +00:00
|
|
|
|
+ [ofStateList φs, ofState φ]ₛca := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofStateList_ofState]
|
2025-01-22 05:51:52 +00:00
|
|
|
|
simp
|
|
|
|
|
|
2025-01-30 06:24:17 +00:00
|
|
|
|
lemma crPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
|
|
|
|
|
crPartF φ * anPartF φ' =
|
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * crPartF φ +
|
|
|
|
|
[crPartF φ, anPartF φ']ₛca := by
|
|
|
|
|
rw [superCommuteF_crPartF_anPartF]
|
2025-01-22 05:51:52 +00:00
|
|
|
|
simp
|
|
|
|
|
|
2025-01-30 06:24:17 +00:00
|
|
|
|
lemma anPartF_mul_crPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
|
|
|
|
|
anPartF φ * crPartF φ' =
|
2025-01-20 15:17:48 +00:00
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
2025-01-30 06:24:17 +00:00
|
|
|
|
crPartF φ' * anPartF φ +
|
|
|
|
|
[anPartF φ, crPartF φ']ₛca := by
|
|
|
|
|
rw [superCommuteF_anPartF_crPartF]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp
|
|
|
|
|
|
2025-01-30 06:24:17 +00:00
|
|
|
|
lemma crPartF_mul_crPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
|
|
|
|
|
crPartF φ * crPartF φ' =
|
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPartF φ' * crPartF φ +
|
|
|
|
|
[crPartF φ, crPartF φ']ₛca := by
|
|
|
|
|
rw [superCommuteF_crPartF_crPartF]
|
2025-01-22 05:51:52 +00:00
|
|
|
|
simp
|
|
|
|
|
|
2025-01-30 06:24:17 +00:00
|
|
|
|
lemma anPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
|
|
|
|
|
anPartF φ * anPartF φ' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * anPartF φ +
|
|
|
|
|
[anPartF φ, anPartF φ']ₛca := by
|
|
|
|
|
rw [superCommuteF_anPartF_anPartF]
|
2025-01-22 05:51:52 +00:00
|
|
|
|
simp
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma ofCrAnList_mul_ofStateList_eq_superCommuteF (φs : List 𝓕.CrAnStates) (φs' : List 𝓕.States) :
|
2025-01-22 05:51:52 +00:00
|
|
|
|
ofCrAnList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofCrAnList φs
|
2025-01-23 15:06:11 +00:00
|
|
|
|
+ [ofCrAnList φs, ofStateList φs']ₛca := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofStatesList]
|
2025-01-22 05:51:52 +00:00
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Symmetry of the super commutor.
|
|
|
|
|
|
|
|
|
|
-/
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma superCommuteF_ofCrAnList_ofCrAnList_symm (φs φs' : List 𝓕.CrAnStates) :
|
2025-01-23 15:06:11 +00:00
|
|
|
|
[ofCrAnList φs, ofCrAnList φs']ₛca =
|
|
|
|
|
(- 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs')) • [ofCrAnList φs', ofCrAnList φs]ₛca := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofCrAnList, superCommuteF_ofCrAnList_ofCrAnList, smul_sub]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [instCommGroup.eq_1, neg_smul, sub_neg_eq_add]
|
|
|
|
|
rw [smul_smul]
|
|
|
|
|
conv_rhs =>
|
|
|
|
|
rhs
|
|
|
|
|
rw [exchangeSign_symm, exchangeSign_mul_self]
|
|
|
|
|
simp only [one_smul]
|
|
|
|
|
abel
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma superCommuteF_ofCrAnState_ofCrAnState_symm (φ φ' : 𝓕.CrAnStates) :
|
2025-01-23 15:06:11 +00:00
|
|
|
|
[ofCrAnState φ, ofCrAnState φ']ₛca =
|
|
|
|
|
(- 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ')) • [ofCrAnState φ', ofCrAnState φ]ₛca := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnState_ofCrAnState, superCommuteF_ofCrAnState_ofCrAnState]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [smul_sub]
|
|
|
|
|
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc, neg_smul, sub_neg_eq_add]
|
|
|
|
|
rw [smul_smul]
|
|
|
|
|
conv_rhs =>
|
|
|
|
|
rhs
|
|
|
|
|
rw [exchangeSign_symm, exchangeSign_mul_self]
|
|
|
|
|
simp only [one_smul]
|
|
|
|
|
abel
|
|
|
|
|
|
2025-01-22 05:51:52 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Splitting the super commutor on lists into sums.
|
|
|
|
|
|
|
|
|
|
-/
|
2025-01-30 07:16:19 +00:00
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma superCommuteF_ofCrAnList_ofCrAnList_cons (φ : 𝓕.CrAnStates) (φs φs' : List 𝓕.CrAnStates) :
|
2025-01-23 15:06:11 +00:00
|
|
|
|
[ofCrAnList φs, ofCrAnList (φ :: φs')]ₛca =
|
|
|
|
|
[ofCrAnList φs, ofCrAnState φ]ₛca * ofCrAnList φs' +
|
2025-01-20 15:17:48 +00:00
|
|
|
|
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ)
|
2025-01-23 15:06:11 +00:00
|
|
|
|
• ofCrAnState φ * [ofCrAnList φs, ofCrAnList φs']ₛca := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
conv_rhs =>
|
|
|
|
|
lhs
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList, sub_mul, ← ofCrAnList_append]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rhs
|
|
|
|
|
rw [FieldStatistic.ofList_singleton, ofCrAnList_append, ofCrAnList_singleton, smul_mul_assoc,
|
|
|
|
|
mul_assoc, ← ofCrAnList_append]
|
|
|
|
|
conv_rhs =>
|
|
|
|
|
rhs
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofCrAnList, mul_sub, smul_mul_assoc]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [instCommGroup.eq_1, List.cons_append, List.append_assoc, List.nil_append,
|
|
|
|
|
Algebra.mul_smul_comm, Algebra.smul_mul_assoc, sub_add_sub_cancel, sub_right_inj]
|
|
|
|
|
rw [← ofCrAnList_cons, smul_smul, FieldStatistic.ofList_cons_eq_mul]
|
|
|
|
|
simp only [instCommGroup, map_mul, mul_comm]
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma superCommuteF_ofCrAnList_ofStateList_cons (φ : 𝓕.States) (φs : List 𝓕.CrAnStates)
|
2025-01-23 15:06:11 +00:00
|
|
|
|
(φs' : List 𝓕.States) : [ofCrAnList φs, ofStateList (φ :: φs')]ₛca =
|
|
|
|
|
[ofCrAnList φs, ofState φ]ₛca * ofStateList φs' +
|
|
|
|
|
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * [ofCrAnList φs, ofStateList φs']ₛca := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofStatesList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
conv_rhs =>
|
|
|
|
|
lhs
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [← ofStateList_singleton, superCommuteF_ofCrAnList_ofStatesList, sub_mul, mul_assoc,
|
2025-01-20 15:17:48 +00:00
|
|
|
|
← ofStateList_append]
|
|
|
|
|
rhs
|
|
|
|
|
rw [FieldStatistic.ofList_singleton, ofStateList_singleton, smul_mul_assoc,
|
|
|
|
|
smul_mul_assoc, mul_assoc]
|
|
|
|
|
conv_rhs =>
|
|
|
|
|
rhs
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofStatesList, mul_sub, smul_mul_assoc]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [instCommGroup, Algebra.smul_mul_assoc, List.singleton_append, Algebra.mul_smul_comm,
|
|
|
|
|
sub_add_sub_cancel, sub_right_inj]
|
|
|
|
|
rw [ofStateList_cons, mul_assoc, smul_smul, FieldStatistic.ofList_cons_eq_mul]
|
|
|
|
|
simp [mul_comm]
|
|
|
|
|
|
2025-01-24 11:09:25 +00:00
|
|
|
|
/--
|
|
|
|
|
Within the creation and annihilation algebra, we have that
|
2025-01-24 11:25:22 +00:00
|
|
|
|
`[φᶜᵃs, φᶜᵃ₀ … φᶜᵃₙ]ₛca = ∑ i, sᵢ • φᶜᵃs₀ … φᶜᵃᵢ₋₁ * [φᶜᵃs, φᶜᵃᵢ]ₛca * φᶜᵃᵢ₊₁ … φᶜᵃₙ`
|
2025-01-24 11:09:25 +00:00
|
|
|
|
where `sᵢ` is the exchange sign for `φᶜᵃs` and `φᶜᵃs₀ … φᶜᵃᵢ₋₁`.
|
|
|
|
|
-/
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma superCommuteF_ofCrAnList_ofCrAnList_eq_sum (φs : List 𝓕.CrAnStates) :
|
2025-01-24 11:09:25 +00:00
|
|
|
|
(φs' : List 𝓕.CrAnStates) → [ofCrAnList φs, ofCrAnList φs']ₛca =
|
|
|
|
|
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
|
2025-01-23 15:06:11 +00:00
|
|
|
|
ofCrAnList (φs'.take n) * [ofCrAnList φs, ofCrAnState (φs'.get n)]ₛca *
|
2025-01-20 15:17:48 +00:00
|
|
|
|
ofCrAnList (φs'.drop (n + 1))
|
|
|
|
|
| [] => by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
simp [← ofCrAnList_nil, superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
| φ :: φs' => by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofCrAnList_cons, superCommuteF_ofCrAnList_ofCrAnList_eq_sum φs φs']
|
2025-01-20 15:17:48 +00:00
|
|
|
|
conv_rhs => erw [Fin.sum_univ_succ]
|
|
|
|
|
congr 1
|
|
|
|
|
· simp
|
|
|
|
|
· simp [Finset.mul_sum, smul_smul, ofCrAnList_cons, mul_assoc,
|
|
|
|
|
FieldStatistic.ofList_cons_eq_mul, mul_comm]
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma superCommuteF_ofCrAnList_ofStateList_eq_sum (φs : List 𝓕.CrAnStates) : (φs' : List 𝓕.States) →
|
2025-01-23 15:06:11 +00:00
|
|
|
|
[ofCrAnList φs, ofStateList φs']ₛca =
|
2025-01-24 11:09:25 +00:00
|
|
|
|
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
|
2025-01-23 15:06:11 +00:00
|
|
|
|
ofStateList (φs'.take n) * [ofCrAnList φs, ofState (φs'.get n)]ₛca *
|
2025-01-20 15:17:48 +00:00
|
|
|
|
ofStateList (φs'.drop (n + 1))
|
|
|
|
|
| [] => by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
simp only [superCommuteF_ofCrAnList_ofStatesList, instCommGroup, ofList_empty,
|
2025-01-20 15:17:48 +00:00
|
|
|
|
exchangeSign_bosonic, one_smul, List.length_nil, Finset.univ_eq_empty, List.take_nil,
|
|
|
|
|
List.get_eq_getElem, List.drop_nil, Finset.sum_empty]
|
|
|
|
|
simp
|
|
|
|
|
| φ :: φs' => by
|
2025-01-30 11:08:10 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofStateList_cons,
|
|
|
|
|
superCommuteF_ofCrAnList_ofStateList_eq_sum φs φs']
|
2025-01-20 15:17:48 +00:00
|
|
|
|
conv_rhs => erw [Fin.sum_univ_succ]
|
|
|
|
|
congr 1
|
|
|
|
|
· simp
|
|
|
|
|
· simp [Finset.mul_sum, smul_smul, ofStateList_cons, mul_assoc,
|
|
|
|
|
FieldStatistic.ofList_cons_eq_mul, mul_comm]
|
2025-01-29 12:09:02 +00:00
|
|
|
|
|
|
|
|
|
lemma summerCommute_jacobi_ofCrAnList (φs1 φs2 φs3 : List 𝓕.CrAnStates) :
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[ofCrAnList φs1, [ofCrAnList φs2, ofCrAnList φs3]ₛca]ₛca =
|
|
|
|
|
𝓢(𝓕 |>ₛ φs1, 𝓕 |>ₛ φs3) •
|
|
|
|
|
(- 𝓢(𝓕 |>ₛ φs2, 𝓕 |>ₛ φs3) • [ofCrAnList φs3, [ofCrAnList φs1, ofCrAnList φs2]ₛca]ₛca -
|
|
|
|
|
𝓢(𝓕 |>ₛ φs1, 𝓕 |>ₛ φs2) • [ofCrAnList φs2, [ofCrAnList φs3, ofCrAnList φs1]ₛca]ₛca) := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
repeat rw [superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [instCommGroup, map_sub, map_smul, neg_smul]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
repeat rw [superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-29 16:06:28 +00:00
|
|
|
|
simp only [instCommGroup.eq_1, ofList_append_eq_mul, List.append_assoc]
|
|
|
|
|
by_cases h1 : (𝓕 |>ₛ φs1) = bosonic <;>
|
|
|
|
|
by_cases h2 : (𝓕 |>ₛ φs2) = bosonic <;>
|
|
|
|
|
by_cases h3 : (𝓕 |>ₛ φs3) = bosonic
|
2025-01-29 16:41:10 +00:00
|
|
|
|
· simp only [h1, h2, h3, mul_self, bosonic_exchangeSign, one_smul, exchangeSign_bosonic, neg_sub]
|
2025-01-29 16:06:28 +00:00
|
|
|
|
abel
|
2025-01-29 16:41:10 +00:00
|
|
|
|
· simp only [h1, h2, bosonic_exchangeSign, one_smul, mul_bosonic, mul_self, map_one,
|
|
|
|
|
exchangeSign_bosonic, neg_sub]
|
2025-01-29 16:06:28 +00:00
|
|
|
|
abel
|
2025-01-29 16:41:10 +00:00
|
|
|
|
· simp only [h1, h3, mul_bosonic, bosonic_exchangeSign, one_smul, exchangeSign_bosonic, neg_sub,
|
|
|
|
|
mul_self, map_one]
|
2025-01-29 16:06:28 +00:00
|
|
|
|
abel
|
2025-01-29 16:41:10 +00:00
|
|
|
|
· simp only [neq_bosonic_iff_eq_fermionic] at h1 h2 h3
|
|
|
|
|
simp only [h1, h2, h3, mul_self, bosonic_exchangeSign, one_smul,
|
|
|
|
|
fermionic_exchangeSign_fermionic, neg_smul, neg_sub, bosonic_mul_fermionic, sub_neg_eq_add,
|
|
|
|
|
mul_bosonic, smul_add, exchangeSign_bosonic]
|
2025-01-29 16:06:28 +00:00
|
|
|
|
abel
|
2025-01-29 16:41:10 +00:00
|
|
|
|
· simp only [neq_bosonic_iff_eq_fermionic] at h1 h2 h3
|
|
|
|
|
simp only [h1, h2, h3, mul_self, map_one, one_smul, exchangeSign_bosonic, mul_bosonic,
|
|
|
|
|
bosonic_exchangeSign, bosonic_mul_fermionic, neg_sub]
|
2025-01-29 16:06:28 +00:00
|
|
|
|
abel
|
2025-01-29 16:41:10 +00:00
|
|
|
|
· simp only [neq_bosonic_iff_eq_fermionic] at h1 h2 h3
|
|
|
|
|
simp only [h1, h2, h3, bosonic_mul_fermionic, fermionic_exchangeSign_fermionic, neg_smul,
|
|
|
|
|
one_smul, sub_neg_eq_add, bosonic_exchangeSign, mul_bosonic, smul_add, exchangeSign_bosonic,
|
|
|
|
|
neg_sub, mul_self]
|
2025-01-29 16:06:28 +00:00
|
|
|
|
abel
|
2025-01-29 16:41:10 +00:00
|
|
|
|
· simp only [neq_bosonic_iff_eq_fermionic] at h1 h2 h3
|
|
|
|
|
simp only [h1, h2, h3, mul_bosonic, fermionic_exchangeSign_fermionic, neg_smul, one_smul,
|
|
|
|
|
sub_neg_eq_add, exchangeSign_bosonic, bosonic_mul_fermionic, smul_add, mul_self,
|
|
|
|
|
bosonic_exchangeSign, neg_sub]
|
2025-01-29 16:06:28 +00:00
|
|
|
|
abel
|
2025-01-29 16:41:10 +00:00
|
|
|
|
· simp only [neq_bosonic_iff_eq_fermionic] at h1 h2 h3
|
|
|
|
|
simp only [h1, h2, h3, mul_self, map_one, one_smul, fermionic_exchangeSign_fermionic, neg_smul,
|
|
|
|
|
neg_sub]
|
2025-01-29 16:06:28 +00:00
|
|
|
|
abel
|
2025-01-30 07:16:19 +00:00
|
|
|
|
|
2025-01-28 11:53:24 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Interaction with grading.
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
lemma superCommuteF_grade {a b : 𝓕.FieldOpFreeAlgebra} {f1 f2 : FieldStatistic}
|
2025-01-28 11:53:24 +00:00
|
|
|
|
(ha : a ∈ statisticSubmodule f1) (hb : b ∈ statisticSubmodule f2) :
|
|
|
|
|
[a, b]ₛca ∈ statisticSubmodule (f1 + f2) := by
|
2025-02-03 11:05:43 +00:00
|
|
|
|
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule f2) : Prop :=
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[a, a2]ₛca ∈ statisticSubmodule (f1 + f2)
|
2025-01-28 11:53:24 +00:00
|
|
|
|
change p b hb
|
|
|
|
|
apply Submodule.span_induction (p := p)
|
|
|
|
|
· intro x hx
|
|
|
|
|
obtain ⟨φs, rfl, hφs⟩ := hx
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [add_eq_mul, instCommGroup, p]
|
2025-02-03 11:05:43 +00:00
|
|
|
|
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule f1) : Prop :=
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[a2, ofCrAnList φs]ₛca ∈ statisticSubmodule (f1 + f2)
|
2025-01-28 11:53:24 +00:00
|
|
|
|
change p a ha
|
|
|
|
|
apply Submodule.span_induction (p := p)
|
|
|
|
|
· intro x hx
|
|
|
|
|
obtain ⟨φs', rfl, hφs'⟩ := hx
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [add_eq_mul, instCommGroup, p]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
apply Submodule.sub_mem _
|
|
|
|
|
· apply ofCrAnList_mem_statisticSubmodule_of
|
|
|
|
|
rw [ofList_append_eq_mul, hφs, hφs']
|
|
|
|
|
· apply Submodule.smul_mem
|
|
|
|
|
apply ofCrAnList_mem_statisticSubmodule_of
|
|
|
|
|
rw [ofList_append_eq_mul, hφs, hφs']
|
|
|
|
|
rw [mul_comm]
|
|
|
|
|
· simp [p]
|
|
|
|
|
· intro x y hx hy hp1 hp2
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [add_eq_mul, instCommGroup, map_add, LinearMap.add_apply, p]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
exact Submodule.add_mem _ hp1 hp2
|
|
|
|
|
· intro c x hx hp1
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [add_eq_mul, instCommGroup, map_smul, LinearMap.smul_apply, p]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
exact Submodule.smul_mem _ c hp1
|
|
|
|
|
· exact ha
|
|
|
|
|
· simp [p]
|
|
|
|
|
· intro x y hx hy hp1 hp2
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [add_eq_mul, instCommGroup, map_add, p]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
exact Submodule.add_mem _ hp1 hp2
|
|
|
|
|
· intro c x hx hp1
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [add_eq_mul, instCommGroup, map_smul, p]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
exact Submodule.smul_mem _ c hp1
|
|
|
|
|
· exact hb
|
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
lemma superCommuteF_bosonic_bosonic {a b : 𝓕.FieldOpFreeAlgebra}
|
2025-01-28 11:53:24 +00:00
|
|
|
|
(ha : a ∈ statisticSubmodule bosonic) (hb : b ∈ statisticSubmodule bosonic) :
|
|
|
|
|
[a, b]ₛca = a * b - b * a := by
|
2025-02-03 11:05:43 +00:00
|
|
|
|
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[a, a2]ₛca = a * a2 - a2 * a
|
2025-01-28 11:53:24 +00:00
|
|
|
|
change p b hb
|
|
|
|
|
apply Submodule.span_induction (p := p)
|
|
|
|
|
· intro x hx
|
|
|
|
|
obtain ⟨φs, rfl, hφs⟩ := hx
|
2025-02-03 11:05:43 +00:00
|
|
|
|
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[a2, ofCrAnList φs]ₛca = a2 * ofCrAnList φs - ofCrAnList φs * a2
|
2025-01-28 11:53:24 +00:00
|
|
|
|
change p a ha
|
|
|
|
|
apply Submodule.span_induction (p := p)
|
|
|
|
|
· intro x hx
|
|
|
|
|
obtain ⟨φs', rfl, hφs'⟩ := hx
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [p]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
simp [hφs, ofCrAnList_append]
|
|
|
|
|
· simp [p]
|
|
|
|
|
· intro x y hx hy hp1 hp2
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp_all only [p, map_add, LinearMap.add_apply, add_mul, mul_add]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
abel
|
|
|
|
|
· intro c x hx hp1
|
|
|
|
|
simp_all [p, smul_sub]
|
|
|
|
|
· exact ha
|
|
|
|
|
· simp [p]
|
|
|
|
|
· intro x y hx hy hp1 hp2
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp_all only [p, map_add, mul_add, add_mul]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
abel
|
|
|
|
|
· intro c x hx hp1
|
|
|
|
|
simp_all [p, smul_sub]
|
|
|
|
|
· exact hb
|
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
lemma superCommuteF_bosonic_fermionic {a b : 𝓕.FieldOpFreeAlgebra}
|
2025-01-28 11:53:24 +00:00
|
|
|
|
(ha : a ∈ statisticSubmodule bosonic) (hb : b ∈ statisticSubmodule fermionic) :
|
|
|
|
|
[a, b]ₛca = a * b - b * a := by
|
2025-02-03 11:05:43 +00:00
|
|
|
|
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[a, a2]ₛca = a * a2 - a2 * a
|
2025-01-28 11:53:24 +00:00
|
|
|
|
change p b hb
|
|
|
|
|
apply Submodule.span_induction (p := p)
|
|
|
|
|
· intro x hx
|
|
|
|
|
obtain ⟨φs, rfl, hφs⟩ := hx
|
2025-02-03 11:05:43 +00:00
|
|
|
|
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[a2, ofCrAnList φs]ₛca = a2 * ofCrAnList φs - ofCrAnList φs * a2
|
2025-01-28 11:53:24 +00:00
|
|
|
|
change p a ha
|
|
|
|
|
apply Submodule.span_induction (p := p)
|
|
|
|
|
· intro x hx
|
|
|
|
|
obtain ⟨φs', rfl, hφs'⟩ := hx
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [p]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
simp [hφs, hφs', ofCrAnList_append]
|
|
|
|
|
· simp [p]
|
|
|
|
|
· intro x y hx hy hp1 hp2
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp_all only [p, map_add, LinearMap.add_apply, add_mul, mul_add]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
abel
|
|
|
|
|
· intro c x hx hp1
|
|
|
|
|
simp_all [p, smul_sub]
|
|
|
|
|
· exact ha
|
|
|
|
|
· simp [p]
|
|
|
|
|
· intro x y hx hy hp1 hp2
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp_all only [p, map_add, mul_add, add_mul]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
abel
|
|
|
|
|
· intro c x hx hp1
|
|
|
|
|
simp_all [p, smul_sub]
|
|
|
|
|
· exact hb
|
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
lemma superCommuteF_fermionic_bonsonic {a b : 𝓕.FieldOpFreeAlgebra}
|
2025-01-28 11:53:24 +00:00
|
|
|
|
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule bosonic) :
|
|
|
|
|
[a, b]ₛca = a * b - b * a := by
|
2025-02-03 11:05:43 +00:00
|
|
|
|
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[a, a2]ₛca = a * a2 - a2 * a
|
2025-01-28 11:53:24 +00:00
|
|
|
|
change p b hb
|
|
|
|
|
apply Submodule.span_induction (p := p)
|
|
|
|
|
· intro x hx
|
|
|
|
|
obtain ⟨φs, rfl, hφs⟩ := hx
|
2025-02-03 11:05:43 +00:00
|
|
|
|
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[a2, ofCrAnList φs]ₛca = a2 * ofCrAnList φs - ofCrAnList φs * a2
|
2025-01-28 11:53:24 +00:00
|
|
|
|
change p a ha
|
|
|
|
|
apply Submodule.span_induction (p := p)
|
|
|
|
|
· intro x hx
|
|
|
|
|
obtain ⟨φs', rfl, hφs'⟩ := hx
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [p]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
simp [hφs, hφs', ofCrAnList_append]
|
|
|
|
|
· simp [p]
|
|
|
|
|
· intro x y hx hy hp1 hp2
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp_all only [p, map_add, LinearMap.add_apply, add_mul, mul_add]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
abel
|
|
|
|
|
· intro c x hx hp1
|
|
|
|
|
simp_all [p, smul_sub]
|
|
|
|
|
· exact ha
|
|
|
|
|
· simp [p]
|
|
|
|
|
· intro x y hx hy hp1 hp2
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp_all only [map_add, mul_add, add_mul, p]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
abel
|
|
|
|
|
· intro c x hx hp1
|
|
|
|
|
simp_all [p, smul_sub]
|
|
|
|
|
· exact hb
|
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
lemma superCommuteF_bonsonic {a b : 𝓕.FieldOpFreeAlgebra} (hb : b ∈ statisticSubmodule bosonic) :
|
2025-01-28 11:53:24 +00:00
|
|
|
|
[a, b]ₛca = a * b - b * a := by
|
|
|
|
|
rw [← bosonicProj_add_fermionicProj a]
|
|
|
|
|
simp only [map_add, LinearMap.add_apply]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_bosonic_bosonic (by simp) hb, superCommuteF_fermionic_bonsonic (by simp) hb]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
simp only [add_mul, mul_add]
|
|
|
|
|
abel
|
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
lemma bosonic_superCommuteF {a b : 𝓕.FieldOpFreeAlgebra} (ha : a ∈ statisticSubmodule bosonic) :
|
2025-01-28 11:53:24 +00:00
|
|
|
|
[a, b]ₛca = a * b - b * a := by
|
|
|
|
|
rw [← bosonicProj_add_fermionicProj b]
|
|
|
|
|
simp only [map_add, LinearMap.add_apply]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_bosonic_bosonic ha (by simp), superCommuteF_bosonic_fermionic ha (by simp)]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
simp only [add_mul, mul_add]
|
|
|
|
|
abel
|
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
lemma superCommuteF_bonsonic_symm {a b : 𝓕.FieldOpFreeAlgebra} (hb : b ∈ statisticSubmodule bosonic) :
|
2025-01-28 11:53:24 +00:00
|
|
|
|
[a, b]ₛca = - [b, a]ₛca := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [bosonic_superCommuteF hb, superCommuteF_bonsonic hb]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
simp
|
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
lemma bonsonic_superCommuteF_symm {a b : 𝓕.FieldOpFreeAlgebra} (ha : a ∈ statisticSubmodule bosonic) :
|
2025-01-28 11:53:24 +00:00
|
|
|
|
[a, b]ₛca = - [b, a]ₛca := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [bosonic_superCommuteF ha, superCommuteF_bonsonic ha]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
simp
|
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
lemma superCommuteF_fermionic_fermionic {a b : 𝓕.FieldOpFreeAlgebra}
|
2025-01-28 11:53:24 +00:00
|
|
|
|
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule fermionic) :
|
|
|
|
|
[a, b]ₛca = a * b + b * a := by
|
2025-02-03 11:05:43 +00:00
|
|
|
|
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[a, a2]ₛca = a * a2 + a2 * a
|
2025-01-28 11:53:24 +00:00
|
|
|
|
change p b hb
|
|
|
|
|
apply Submodule.span_induction (p := p)
|
|
|
|
|
· intro x hx
|
|
|
|
|
obtain ⟨φs, rfl, hφs⟩ := hx
|
2025-02-03 11:05:43 +00:00
|
|
|
|
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[a2, ofCrAnList φs]ₛca = a2 * ofCrAnList φs + ofCrAnList φs * a2
|
2025-01-28 11:53:24 +00:00
|
|
|
|
change p a ha
|
|
|
|
|
apply Submodule.span_induction (p := p)
|
|
|
|
|
· intro x hx
|
|
|
|
|
obtain ⟨φs', rfl, hφs'⟩ := hx
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [p]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofCrAnList]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
simp [hφs, hφs', ofCrAnList_append]
|
|
|
|
|
· simp [p]
|
|
|
|
|
· intro x y hx hy hp1 hp2
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp_all only [p, map_add, LinearMap.add_apply, add_mul, mul_add]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
abel
|
|
|
|
|
· intro c x hx hp1
|
|
|
|
|
simp_all [p, smul_sub]
|
|
|
|
|
· exact ha
|
|
|
|
|
· simp [p]
|
|
|
|
|
· intro x y hx hy hp1 hp2
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp_all only [map_add, mul_add, add_mul, p]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
abel
|
|
|
|
|
· intro c x hx hp1
|
|
|
|
|
simp_all [p, smul_sub]
|
|
|
|
|
· exact hb
|
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
lemma superCommuteF_fermionic_fermionic_symm {a b : 𝓕.FieldOpFreeAlgebra}
|
2025-01-28 11:53:24 +00:00
|
|
|
|
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule fermionic) :
|
|
|
|
|
[a, b]ₛca = [b, a]ₛca := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_fermionic_fermionic ha hb]
|
|
|
|
|
rw [superCommuteF_fermionic_fermionic hb ha]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
abel
|
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
lemma superCommuteF_expand_bosonicProj_fermionicProj (a b : 𝓕.FieldOpFreeAlgebra) :
|
2025-01-29 15:08:43 +00:00
|
|
|
|
[a, b]ₛca = bosonicProj a * bosonicProj b - bosonicProj b * bosonicProj a +
|
|
|
|
|
bosonicProj a * fermionicProj b - fermionicProj b * bosonicProj a +
|
|
|
|
|
fermionicProj a * bosonicProj b - bosonicProj b * fermionicProj a +
|
|
|
|
|
fermionicProj a * fermionicProj b + fermionicProj b * fermionicProj a := by
|
|
|
|
|
conv_lhs => rw [← bosonicProj_add_fermionicProj a, ← bosonicProj_add_fermionicProj b]
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [map_add, LinearMap.add_apply]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_bonsonic (by simp),
|
|
|
|
|
superCommuteF_fermionic_bonsonic (by simp) (by simp),
|
|
|
|
|
superCommuteF_bosonic_fermionic (by simp) (by simp),
|
|
|
|
|
superCommuteF_fermionic_fermionic (by simp) (by simp)]
|
2025-01-29 15:08:43 +00:00
|
|
|
|
abel
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma superCommuteF_ofCrAnList_ofCrAnList_bosonic_or_fermionic (φs φs' : List 𝓕.CrAnStates) :
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[ofCrAnList φs, ofCrAnList φs']ₛca ∈ statisticSubmodule bosonic ∨
|
2025-01-28 11:53:24 +00:00
|
|
|
|
[ofCrAnList φs, ofCrAnList φs']ₛca ∈ statisticSubmodule fermionic := by
|
|
|
|
|
by_cases h1 : (𝓕 |>ₛ φs) = bosonic <;> by_cases h2 : (𝓕 |>ₛ φs') = bosonic
|
|
|
|
|
· left
|
|
|
|
|
have h : bosonic = bosonic + bosonic := by
|
|
|
|
|
simp only [add_eq_mul, instCommGroup, mul_self]
|
|
|
|
|
rfl
|
|
|
|
|
rw [h]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
apply superCommuteF_grade
|
2025-01-28 11:53:24 +00:00
|
|
|
|
apply ofCrAnList_mem_statisticSubmodule_of _ _ h1
|
|
|
|
|
apply ofCrAnList_mem_statisticSubmodule_of _ _ h2
|
|
|
|
|
· right
|
|
|
|
|
have h : fermionic = bosonic + fermionic := by
|
|
|
|
|
simp only [add_eq_mul, instCommGroup, mul_self]
|
|
|
|
|
rfl
|
|
|
|
|
rw [h]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
apply superCommuteF_grade
|
2025-01-28 11:53:24 +00:00
|
|
|
|
apply ofCrAnList_mem_statisticSubmodule_of _ _ h1
|
|
|
|
|
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h2)
|
|
|
|
|
· right
|
|
|
|
|
have h : fermionic = fermionic + bosonic := by
|
|
|
|
|
simp only [add_eq_mul, instCommGroup, mul_self]
|
|
|
|
|
rfl
|
|
|
|
|
rw [h]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
apply superCommuteF_grade
|
2025-01-28 11:53:24 +00:00
|
|
|
|
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h1)
|
|
|
|
|
apply ofCrAnList_mem_statisticSubmodule_of _ _ h2
|
|
|
|
|
· left
|
|
|
|
|
have h : bosonic = fermionic + fermionic := by
|
|
|
|
|
simp only [add_eq_mul, instCommGroup, mul_self]
|
|
|
|
|
rfl
|
|
|
|
|
rw [h]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
apply superCommuteF_grade
|
2025-01-28 11:53:24 +00:00
|
|
|
|
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h1)
|
|
|
|
|
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h2)
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic (φ φ' : 𝓕.CrAnStates) :
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[ofCrAnState φ, ofCrAnState φ']ₛca ∈ statisticSubmodule bosonic ∨
|
2025-01-29 15:08:43 +00:00
|
|
|
|
[ofCrAnState φ, ofCrAnState φ']ₛca ∈ statisticSubmodule fermionic := by
|
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
exact superCommuteF_ofCrAnList_ofCrAnList_bosonic_or_fermionic [φ] [φ']
|
2025-01-29 15:08:43 +00:00
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma superCommuteF_superCommuteF_ofCrAnState_bosonic_or_fermionic (φ1 φ2 φ3 : 𝓕.CrAnStates) :
|
2025-01-29 15:08:43 +00:00
|
|
|
|
[ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca ∈ statisticSubmodule bosonic ∨
|
|
|
|
|
[ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca ∈ statisticSubmodule fermionic := by
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rcases superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic φ2 φ3 with hs | hs
|
2025-01-29 15:08:43 +00:00
|
|
|
|
<;> rcases ofCrAnState_bosonic_or_fermionic φ1 with h1 | h1
|
|
|
|
|
· left
|
|
|
|
|
have h : bosonic = bosonic + bosonic := by
|
|
|
|
|
simp only [add_eq_mul, instCommGroup, mul_self]
|
|
|
|
|
rfl
|
|
|
|
|
rw [h]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
apply superCommuteF_grade h1 hs
|
2025-01-29 15:08:43 +00:00
|
|
|
|
· right
|
|
|
|
|
have h : fermionic = fermionic + bosonic := by
|
|
|
|
|
simp only [add_eq_mul, instCommGroup, mul_self]
|
|
|
|
|
rfl
|
|
|
|
|
rw [h]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
apply superCommuteF_grade h1 hs
|
2025-01-29 15:08:43 +00:00
|
|
|
|
· right
|
|
|
|
|
have h : fermionic = bosonic + fermionic := by
|
|
|
|
|
simp only [add_eq_mul, instCommGroup, mul_self]
|
|
|
|
|
rfl
|
|
|
|
|
rw [h]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
apply superCommuteF_grade h1 hs
|
2025-01-29 15:08:43 +00:00
|
|
|
|
· left
|
|
|
|
|
have h : bosonic = fermionic + fermionic := by
|
|
|
|
|
simp only [add_eq_mul, instCommGroup, mul_self]
|
|
|
|
|
rfl
|
|
|
|
|
rw [h]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
apply superCommuteF_grade h1 hs
|
2025-01-28 11:53:24 +00:00
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
lemma superCommuteF_bosonic_ofCrAnList_eq_sum (a : 𝓕.FieldOpFreeAlgebra) (φs : List 𝓕.CrAnStates)
|
2025-01-28 11:53:24 +00:00
|
|
|
|
(ha : a ∈ statisticSubmodule bosonic) :
|
|
|
|
|
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length),
|
|
|
|
|
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
|
|
|
|
|
ofCrAnList (φs.drop (n + 1)) := by
|
2025-02-03 11:05:43 +00:00
|
|
|
|
let p (a : 𝓕.FieldOpFreeAlgebra) (ha : a ∈ statisticSubmodule bosonic) : Prop :=
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length),
|
2025-01-28 11:53:24 +00:00
|
|
|
|
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
|
|
|
|
|
ofCrAnList (φs.drop (n + 1))
|
|
|
|
|
change p a ha
|
|
|
|
|
apply Submodule.span_induction (p := p)
|
|
|
|
|
· intro a ha
|
|
|
|
|
obtain ⟨φs, rfl, hφs⟩ := ha
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [List.get_eq_getElem, p]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofCrAnList_eq_sum]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
congr
|
|
|
|
|
funext n
|
|
|
|
|
simp [hφs]
|
|
|
|
|
· simp [p]
|
|
|
|
|
· intro x y hx hy hpx hpy
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp_all only [List.get_eq_getElem, map_add, LinearMap.add_apply, p]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
rw [← Finset.sum_add_distrib]
|
|
|
|
|
congr
|
|
|
|
|
funext n
|
|
|
|
|
simp [mul_add, add_mul]
|
|
|
|
|
· intro c x hx hpx
|
|
|
|
|
simp_all [p, Finset.smul_sum]
|
|
|
|
|
· exact ha
|
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
lemma superCommuteF_fermionic_ofCrAnList_eq_sum (a : 𝓕.FieldOpFreeAlgebra) (φs : List 𝓕.CrAnStates)
|
2025-01-28 11:53:24 +00:00
|
|
|
|
(ha : a ∈ statisticSubmodule fermionic) :
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length), 𝓢(fermionic, 𝓕 |>ₛ φs.take n) •
|
2025-01-28 11:53:24 +00:00
|
|
|
|
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
|
|
|
|
|
ofCrAnList (φs.drop (n + 1)) := by
|
2025-02-03 11:05:43 +00:00
|
|
|
|
let p (a : 𝓕.FieldOpFreeAlgebra) (ha : a ∈ statisticSubmodule fermionic) : Prop :=
|
2025-01-29 16:06:28 +00:00
|
|
|
|
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length), 𝓢(fermionic, 𝓕 |>ₛ φs.take n) •
|
2025-01-28 11:53:24 +00:00
|
|
|
|
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
|
|
|
|
|
ofCrAnList (φs.drop (n + 1))
|
|
|
|
|
change p a ha
|
|
|
|
|
apply Submodule.span_induction (p := p)
|
|
|
|
|
· intro a ha
|
|
|
|
|
obtain ⟨φs, rfl, hφs⟩ := ha
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [instCommGroup, List.get_eq_getElem, Algebra.smul_mul_assoc, p]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
rw [superCommuteF_ofCrAnList_ofCrAnList_eq_sum]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
congr
|
|
|
|
|
funext n
|
|
|
|
|
simp [hφs]
|
|
|
|
|
· simp [p]
|
|
|
|
|
· intro x y hx hy hpx hpy
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp_all only [p, instCommGroup, List.get_eq_getElem, Algebra.smul_mul_assoc, map_add,
|
|
|
|
|
LinearMap.add_apply]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
rw [← Finset.sum_add_distrib]
|
|
|
|
|
congr
|
|
|
|
|
funext n
|
|
|
|
|
simp [mul_add, add_mul]
|
|
|
|
|
· intro c x hx hpx
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp_all only [p, instCommGroup, List.get_eq_getElem, Algebra.smul_mul_assoc, map_smul,
|
|
|
|
|
LinearMap.smul_apply, Finset.smul_sum, Algebra.mul_smul_comm]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
congr
|
|
|
|
|
funext x
|
|
|
|
|
simp [smul_smul, mul_comm]
|
|
|
|
|
· exact ha
|
|
|
|
|
|
2025-01-30 05:52:50 +00:00
|
|
|
|
lemma statistic_neq_of_superCommuteF_fermionic {φs φs' : List 𝓕.CrAnStates}
|
2025-01-28 11:53:24 +00:00
|
|
|
|
(h : [ofCrAnList φs, ofCrAnList φs']ₛca ∈ statisticSubmodule fermionic) :
|
|
|
|
|
(𝓕 |>ₛ φs) ≠ (𝓕 |>ₛ φs') ∨ [ofCrAnList φs, ofCrAnList φs']ₛca = 0 := by
|
|
|
|
|
by_cases h0 : [ofCrAnList φs, ofCrAnList φs']ₛca = 0
|
|
|
|
|
· simp [h0]
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [ne_eq, h0, or_false]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
by_contra hn
|
|
|
|
|
refine h0 (eq_zero_of_bosonic_and_fermionic ?_ h)
|
|
|
|
|
by_cases hc : (𝓕 |>ₛ φs) = bosonic
|
|
|
|
|
· have h1 : bosonic = bosonic + bosonic := by
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [add_eq_mul, instCommGroup, mul_self]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
rfl
|
|
|
|
|
rw [h1]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
apply superCommuteF_grade
|
2025-01-28 11:53:24 +00:00
|
|
|
|
apply ofCrAnList_mem_statisticSubmodule_of _ _ hc
|
|
|
|
|
apply ofCrAnList_mem_statisticSubmodule_of _ _
|
|
|
|
|
rw [← hn, hc]
|
|
|
|
|
· have h1 : bosonic = fermionic + fermionic := by
|
2025-01-29 16:41:10 +00:00
|
|
|
|
simp only [add_eq_mul, instCommGroup, mul_self]
|
2025-01-28 11:53:24 +00:00
|
|
|
|
rfl
|
|
|
|
|
rw [h1]
|
2025-01-30 05:52:50 +00:00
|
|
|
|
apply superCommuteF_grade
|
2025-01-28 11:53:24 +00:00
|
|
|
|
apply ofCrAnList_mem_statisticSubmodule_of _ _
|
|
|
|
|
simpa using hc
|
|
|
|
|
apply ofCrAnList_mem_statisticSubmodule_of _ _
|
|
|
|
|
rw [← hn]
|
|
|
|
|
simpa using hc
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-02-03 11:05:43 +00:00
|
|
|
|
end FieldOpFreeAlgebra
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-01-21 06:11:47 +00:00
|
|
|
|
end FieldSpecification
|