2024-10-07 12:20:53 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
2024-10-10 08:57:22 +00:00
|
|
|
|
import HepLean.Tensors.OverColor.Iso
|
2024-10-15 06:08:56 +00:00
|
|
|
|
import HepLean.Tensors.OverColor.Discrete
|
|
|
|
|
import HepLean.Tensors.OverColor.Lift
|
2024-10-09 07:42:56 +00:00
|
|
|
|
import Mathlib.CategoryTheory.Monoidal.NaturalTransformation
|
2024-10-07 12:20:53 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Tensor trees
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
open IndexNotation
|
|
|
|
|
open CategoryTheory
|
2024-10-09 16:57:41 +00:00
|
|
|
|
open MonoidalCategory
|
2024-10-07 12:20:53 +00:00
|
|
|
|
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- The sturcture of a type of tensors e.g. Lorentz tensors, Einstien tensors,
|
|
|
|
|
complex Lorentz tensors.
|
|
|
|
|
Note: This structure is not fully defined yet. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
structure TensorStruct where
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- The colors of indices e.g. up or down. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
C : Type
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- The symmetry group acting on these tensor e.g. the Lorentz group or SL(2,ℂ). -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
G : Type
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- An instance of `G` as a group. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
G_group : Group G
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- The field over which we want to consider the tensors to live in, usually `ℝ` or `ℂ`. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
k : Type
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- An instance of `k` as a commutative ring. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
k_commRing : CommRing k
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- A `MonoidalFunctor` from `OverColor C` giving the rep corresponding to a map of colors
|
|
|
|
|
`X → C`. -/
|
2024-10-15 06:08:56 +00:00
|
|
|
|
FDiscrete : Discrete C ⥤ Rep k G
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- A map from `C` to `C`. An involution. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
τ : C → C
|
2024-10-15 06:08:56 +00:00
|
|
|
|
τ_involution : Function.Involutive τ
|
|
|
|
|
/-- The natural transformation describing contraction. -/
|
2024-10-16 16:38:36 +00:00
|
|
|
|
contr : OverColor.Discrete.pairτ FDiscrete τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G)
|
2024-10-15 06:08:56 +00:00
|
|
|
|
/-- The natural transformation describing the metric. -/
|
2024-10-16 16:38:36 +00:00
|
|
|
|
metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FDiscrete
|
2024-10-15 06:08:56 +00:00
|
|
|
|
/-- The natural transformation describing the unit. -/
|
|
|
|
|
unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FDiscrete τ
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- A specification of the dimension of each color in C. This will be used for explicit
|
|
|
|
|
evaluation of tensors. -/
|
|
|
|
|
evalNo : C → ℕ
|
2024-10-07 12:20:53 +00:00
|
|
|
|
|
2024-10-15 06:08:56 +00:00
|
|
|
|
noncomputable section
|
|
|
|
|
|
2024-10-07 12:20:53 +00:00
|
|
|
|
namespace TensorStruct
|
2024-10-18 16:08:17 +00:00
|
|
|
|
open OverColor
|
2024-10-07 12:20:53 +00:00
|
|
|
|
|
|
|
|
|
variable (S : TensorStruct)
|
|
|
|
|
|
|
|
|
|
instance : CommRing S.k := S.k_commRing
|
|
|
|
|
|
|
|
|
|
instance : Group S.G := S.G_group
|
|
|
|
|
|
2024-10-15 06:08:56 +00:00
|
|
|
|
/-- The lift of the functor `S.F` to a monoidal functor. -/
|
|
|
|
|
def F : MonoidalFunctor (OverColor S.C) (Rep S.k S.G) := (OverColor.lift).obj S.FDiscrete
|
|
|
|
|
|
2024-10-18 16:08:17 +00:00
|
|
|
|
lemma F_def : F S = (OverColor.lift).obj S.FDiscrete := rfl
|
|
|
|
|
|
|
|
|
|
lemma perm_contr_cond {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C}
|
|
|
|
|
{i : Fin n.succ.succ} {j : Fin n.succ}
|
|
|
|
|
(h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
|
|
|
|
|
c (Fin.succAbove ((Hom.toEquiv σ).symm i) ((Hom.toEquiv (extractOne i σ)).symm j)) =
|
|
|
|
|
S.τ (c ((Hom.toEquiv σ).symm i)) := by
|
|
|
|
|
have h1 := Hom.toEquiv_comp_apply σ
|
2024-10-19 09:19:29 +00:00
|
|
|
|
simp only [Nat.succ_eq_add_one, Functor.const_obj_obj, mk_hom] at h1
|
2024-10-18 16:08:17 +00:00
|
|
|
|
rw [h1, h1]
|
2024-10-19 09:19:29 +00:00
|
|
|
|
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Equiv.apply_symm_apply]
|
2024-10-18 16:08:17 +00:00
|
|
|
|
rw [← h]
|
|
|
|
|
congr
|
2024-10-19 09:19:29 +00:00
|
|
|
|
simp only [Nat.succ_eq_add_one, HepLean.Fin.finExtractOnePerm, HepLean.Fin.finExtractOnPermHom,
|
|
|
|
|
HepLean.Fin.finExtractOne_symm_inr_apply, Equiv.symm_apply_apply, Equiv.coe_fn_symm_mk]
|
2024-10-18 16:08:17 +00:00
|
|
|
|
erw [Equiv.apply_symm_apply]
|
|
|
|
|
rw [HepLean.Fin.succsAbove_predAboveI]
|
|
|
|
|
erw [Equiv.apply_symm_apply]
|
2024-10-19 09:19:29 +00:00
|
|
|
|
simp only [Nat.succ_eq_add_one, ne_eq]
|
2024-10-18 16:08:17 +00:00
|
|
|
|
erw [Equiv.apply_eq_iff_eq]
|
|
|
|
|
exact (Fin.succAbove_ne i j).symm
|
2024-10-15 06:08:56 +00:00
|
|
|
|
|
2024-10-18 09:46:27 +00:00
|
|
|
|
/-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo`
|
2024-10-19 09:19:29 +00:00
|
|
|
|
under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FDiscrete`. -/
|
2024-10-18 09:46:27 +00:00
|
|
|
|
def contrFin1Fin1 {n : ℕ} (c : Fin n.succ.succ → S.C)
|
2024-10-15 06:08:56 +00:00
|
|
|
|
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
2024-10-18 09:46:27 +00:00
|
|
|
|
S.F.obj (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) ≅
|
|
|
|
|
(OverColor.Discrete.pairτ S.FDiscrete S.τ).obj { as := c i } := by
|
2024-10-19 09:47:23 +00:00
|
|
|
|
apply (S.F.mapIso
|
|
|
|
|
(OverColor.mkSum (((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)))).trans
|
2024-10-15 06:08:56 +00:00
|
|
|
|
apply (S.F.μIso _ _).symm.trans
|
|
|
|
|
apply tensorIso ?_ ?_
|
|
|
|
|
· symm
|
|
|
|
|
apply (OverColor.forgetLiftApp S.FDiscrete (c i)).symm.trans
|
|
|
|
|
apply S.F.mapIso
|
|
|
|
|
apply OverColor.mkIso
|
|
|
|
|
funext x
|
|
|
|
|
fin_cases x
|
|
|
|
|
rfl
|
|
|
|
|
· symm
|
|
|
|
|
apply (OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).symm.trans
|
|
|
|
|
apply S.F.mapIso
|
|
|
|
|
apply OverColor.mkIso
|
|
|
|
|
funext x
|
|
|
|
|
fin_cases x
|
|
|
|
|
simp [h]
|
|
|
|
|
|
2024-10-18 09:46:27 +00:00
|
|
|
|
lemma contrFin1Fin1_inv_tmul {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|
|
|
|
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
|
|
|
|
(x : S.FDiscrete.obj { as := c i })
|
|
|
|
|
(y : S.FDiscrete.obj { as := S.τ (c i) }) :
|
|
|
|
|
(S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) =
|
|
|
|
|
PiTensorProduct.tprod S.k (fun k =>
|
|
|
|
|
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
|
|
|
|
|
(eqToHom (by simp [h]))).hom y) := by
|
2024-10-19 09:19:29 +00:00
|
|
|
|
simp only [Nat.succ_eq_add_one, contrFin1Fin1, Functor.comp_obj, Discrete.functor_obj_eq_as,
|
|
|
|
|
Function.comp_apply, Iso.trans_symm, Iso.symm_symm_eq, Iso.trans_inv, tensorIso_inv,
|
|
|
|
|
Iso.symm_inv, Functor.mapIso_hom, tensor_comp, MonoidalFunctor.μIso_hom, Category.assoc,
|
|
|
|
|
LaxMonoidalFunctor.μ_natural, Functor.mapIso_inv, Action.comp_hom,
|
|
|
|
|
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom,
|
|
|
|
|
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
|
|
|
|
Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, Functor.id_obj, mk_hom,
|
|
|
|
|
Fin.isValue]
|
2024-10-18 09:46:27 +00:00
|
|
|
|
change (S.F.map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
|
|
|
|
((S.F.map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
2024-10-19 09:47:23 +00:00
|
|
|
|
((S.F.μ (OverColor.mk fun _ => c i) (OverColor.mk fun _ => S.τ (c i))).hom
|
2024-10-18 09:46:27 +00:00
|
|
|
|
((((OverColor.forgetLiftApp S.FDiscrete (c i)).inv.hom x) ⊗ₜ[S.k]
|
|
|
|
|
((OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).inv.hom y))))) = _
|
2024-10-19 09:19:29 +00:00
|
|
|
|
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
|
|
|
|
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
|
|
|
|
forgetLiftApp, Action.mkIso_inv_hom, LinearEquiv.toModuleIso_inv, Fin.isValue]
|
2024-10-19 09:47:23 +00:00
|
|
|
|
erw [OverColor.forgetLiftAppV_symm_apply,
|
|
|
|
|
OverColor.forgetLiftAppV_symm_apply S.FDiscrete (S.τ (c i))]
|
|
|
|
|
change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum
|
|
|
|
|
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
2024-10-18 09:46:27 +00:00
|
|
|
|
(((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
2024-10-19 09:47:23 +00:00
|
|
|
|
(((OverColor.lift.obj S.FDiscrete).μ (OverColor.mk fun _ => c i)
|
|
|
|
|
(OverColor.mk fun _ => S.τ (c i))).hom
|
|
|
|
|
(((PiTensorProduct.tprod S.k) fun _ => x) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun _ => y))) = _
|
2024-10-18 09:46:27 +00:00
|
|
|
|
rw [OverColor.lift.obj_μ_tprod_tmul S.FDiscrete]
|
2024-10-19 09:47:23 +00:00
|
|
|
|
change ((OverColor.lift.obj S.FDiscrete).map
|
|
|
|
|
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
2024-10-18 09:46:27 +00:00
|
|
|
|
(((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
2024-10-19 09:47:23 +00:00
|
|
|
|
((PiTensorProduct.tprod S.k) _)) = _
|
2024-10-18 09:46:27 +00:00
|
|
|
|
rw [OverColor.lift.map_tprod S.FDiscrete]
|
2024-10-19 09:47:23 +00:00
|
|
|
|
change ((OverColor.lift.obj S.FDiscrete).map
|
|
|
|
|
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
2024-10-18 09:46:27 +00:00
|
|
|
|
((PiTensorProduct.tprod S.k _)) = _
|
|
|
|
|
rw [OverColor.lift.map_tprod S.FDiscrete]
|
|
|
|
|
apply congrArg
|
|
|
|
|
funext r
|
|
|
|
|
match r with
|
|
|
|
|
| Sum.inl 0 =>
|
2024-10-19 09:19:29 +00:00
|
|
|
|
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
|
|
|
|
|
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
|
|
|
|
|
instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, lift.discreteSumEquiv, Sum.elim_inl,
|
|
|
|
|
Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor]
|
|
|
|
|
simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
|
|
|
|
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
2024-10-18 09:46:27 +00:00
|
|
|
|
rfl
|
|
|
|
|
| Sum.inr 0 =>
|
2024-10-19 09:19:29 +00:00
|
|
|
|
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
|
|
|
|
|
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
|
|
|
|
|
instMonoidalCategoryStruct_tensorObj_hom, lift.discreteFunctorMapEqIso, eqToIso_refl,
|
|
|
|
|
Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.mapIso_hom,
|
|
|
|
|
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, lift.discreteSumEquiv,
|
|
|
|
|
Sum.elim_inl, Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor,
|
|
|
|
|
LinearEquiv.ofLinear_apply]
|
2024-10-18 09:46:27 +00:00
|
|
|
|
rfl
|
|
|
|
|
|
2024-10-18 16:08:17 +00:00
|
|
|
|
lemma contrFin1Fin1_hom_hom_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
2024-10-18 09:46:27 +00:00
|
|
|
|
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
2024-10-19 09:47:23 +00:00
|
|
|
|
(x : (k : Fin 1 ⊕ Fin 1) → (S.FDiscrete.obj
|
|
|
|
|
{ as := (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).hom k })) :
|
2024-10-18 16:08:17 +00:00
|
|
|
|
(S.contrFin1Fin1 c i j h).hom.hom (PiTensorProduct.tprod S.k x) =
|
|
|
|
|
x (Sum.inl 0) ⊗ₜ[S.k] ((S.FDiscrete.map (eqToHom (by simp [h]))).hom (x (Sum.inr 0))) := by
|
|
|
|
|
change ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).hom _ = _
|
2024-10-19 09:47:23 +00:00
|
|
|
|
trans ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).toLinearEquiv
|
|
|
|
|
(PiTensorProduct.tprod S.k x)
|
2024-10-19 10:57:09 +00:00
|
|
|
|
· rfl
|
2024-10-18 16:08:17 +00:00
|
|
|
|
erw [← LinearEquiv.eq_symm_apply]
|
|
|
|
|
erw [contrFin1Fin1_inv_tmul]
|
|
|
|
|
congr
|
|
|
|
|
funext i
|
|
|
|
|
match i with
|
|
|
|
|
| Sum.inl 0 =>
|
2024-10-19 10:57:09 +00:00
|
|
|
|
rfl
|
2024-10-18 16:08:17 +00:00
|
|
|
|
| Sum.inr 0 =>
|
2024-10-19 09:19:29 +00:00
|
|
|
|
simp only [Nat.succ_eq_add_one, Fin.isValue, mk_hom, Function.comp_apply,
|
|
|
|
|
Discrete.functor_obj_eq_as]
|
2024-10-18 16:08:17 +00:00
|
|
|
|
change _ = ((S.FDiscrete.map (eqToHom _)) ≫ (S.FDiscrete.map (eqToHom _))).hom (x (Sum.inr 0))
|
|
|
|
|
rw [← Functor.map_comp]
|
|
|
|
|
simp
|
|
|
|
|
exact h
|
2024-10-18 09:46:27 +00:00
|
|
|
|
|
|
|
|
|
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and
|
|
|
|
|
a `j` in `Fin n.succ` allowing us to undertake contraction. -/
|
|
|
|
|
def contrIso {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|
|
|
|
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
|
|
|
|
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FDiscrete S.τ).obj
|
|
|
|
|
(Discrete.mk (c i))) ⊗
|
|
|
|
|
(OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
|
|
|
|
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <|
|
|
|
|
|
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <|
|
|
|
|
|
(S.F.μIso _ _).symm.trans <| by
|
|
|
|
|
refine tensorIso (S.contrFin1Fin1 c i j h) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
|
|
|
|
|
|
2024-10-18 16:08:17 +00:00
|
|
|
|
lemma contrIso_hom_hom {n : ℕ} {c1 : Fin n.succ.succ → S.C}
|
2024-10-19 09:19:29 +00:00
|
|
|
|
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} :
|
|
|
|
|
(S.contrIso c1 i j h).hom.hom =
|
|
|
|
|
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ≫
|
|
|
|
|
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ≫
|
|
|
|
|
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
|
|
|
|
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫
|
|
|
|
|
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗
|
|
|
|
|
(S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom) := by
|
2024-10-19 10:57:09 +00:00
|
|
|
|
rfl
|
2024-10-18 09:46:27 +00:00
|
|
|
|
|
2024-10-18 16:08:17 +00:00
|
|
|
|
/-- `contrMap` is a function that takes a natural number `n`, a function `c` from
|
2024-10-16 16:38:36 +00:00
|
|
|
|
`Fin n.succ.succ` to `S.C`, an index `i` of type `Fin n.succ.succ`, an index `j` of type
|
|
|
|
|
`Fin n.succ`, and a proof `h` that `c (i.succAbove j) = S.τ (c i)`. It returns a morphism
|
|
|
|
|
corresponding to the contraction of the `i`th index with the `i.succAbove j` index.
|
|
|
|
|
--/
|
|
|
|
|
def contrMap {n : ℕ} (c : Fin n.succ.succ → S.C)
|
2024-10-15 06:08:56 +00:00
|
|
|
|
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
|
|
|
|
S.F.obj (OverColor.mk c) ⟶
|
2024-10-19 08:33:49 +00:00
|
|
|
|
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
2024-10-15 06:08:56 +00:00
|
|
|
|
(S.contrIso c i j h).hom ≫
|
|
|
|
|
(tensorHom (S.contr.app (Discrete.mk (c i))) (𝟙 _)) ≫
|
|
|
|
|
(MonoidalCategory.leftUnitor _).hom
|
|
|
|
|
|
2024-10-19 10:07:03 +00:00
|
|
|
|
/-- Casts an element of the monoidal unit of `Rep S.k S.G` to the field `S.k`. -/
|
2024-10-19 09:19:29 +00:00
|
|
|
|
def castToField (v : (↑((𝟙_ (Discrete S.C ⥤ Rep S.k S.G)).obj { as := c }).V)) : S.k := v
|
2024-10-18 16:08:17 +00:00
|
|
|
|
|
|
|
|
|
lemma contrMap_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|
|
|
|
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
|
|
|
|
(x : (i : Fin n.succ.succ) → S.FDiscrete.obj (Discrete.mk (c i))) :
|
2024-10-19 09:19:29 +00:00
|
|
|
|
(S.contrMap c i j h).hom (PiTensorProduct.tprod S.k x) =
|
2024-10-18 16:08:17 +00:00
|
|
|
|
(S.castToField ((S.contr.app (Discrete.mk (c i))).hom ((x i) ⊗ₜ[S.k]
|
2024-10-19 09:19:29 +00:00
|
|
|
|
(S.FDiscrete.map (Discrete.eqToHom h)).hom (x (i.succAbove j)))) : S.k)
|
2024-10-19 09:47:23 +00:00
|
|
|
|
• (PiTensorProduct.tprod S.k (fun k => x (i.succAbove (j.succAbove k))) :
|
|
|
|
|
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))) := by
|
2024-10-18 16:08:17 +00:00
|
|
|
|
rw [contrMap, contrIso]
|
|
|
|
|
simp only [Nat.succ_eq_add_one, S.F_def, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom,
|
|
|
|
|
tensorIso_hom, Monoidal.tensorUnit_obj, tensorHom_id,
|
|
|
|
|
Category.assoc, Action.comp_hom, Action.instMonoidalCategory_tensorObj_V,
|
|
|
|
|
Action.instMonoidalCategory_tensorHom_hom, Action.instMonoidalCategory_tensorUnit_V,
|
|
|
|
|
Action.instMonoidalCategory_whiskerRight_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
|
|
|
|
|
Function.comp_apply, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
|
|
|
|
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as]
|
|
|
|
|
change (λ_ ((lift.obj S.FDiscrete).obj _)).hom.hom
|
2024-10-19 09:47:23 +00:00
|
|
|
|
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj
|
|
|
|
|
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
|
|
|
|
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
|
|
|
|
|
(((lift.obj S.FDiscrete).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)
|
|
|
|
|
∘ Sum.inl))
|
|
|
|
|
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
|
|
|
|
|
(((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
|
|
|
|
|
(((lift.obj S.FDiscrete).map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom
|
|
|
|
|
((PiTensorProduct.tprod S.k) x)))))) = _
|
2024-10-18 16:08:17 +00:00
|
|
|
|
rw [lift.map_tprod]
|
|
|
|
|
change (λ_ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
2024-10-19 09:47:23 +00:00
|
|
|
|
(((S.contr.app { as := c i }).hom ▷
|
|
|
|
|
((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
|
|
|
|
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
|
|
|
|
|
(((lift.obj S.FDiscrete).μIso (OverColor.mk
|
|
|
|
|
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
|
|
|
|
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
|
|
|
|
|
(((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
|
|
|
|
|
((PiTensorProduct.tprod S.k) fun i_1 =>
|
|
|
|
|
(lift.discreteFunctorMapEqIso S.FDiscrete _)
|
|
|
|
|
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm i_1))))))) = _
|
2024-10-18 16:08:17 +00:00
|
|
|
|
rw [lift.map_tprod]
|
|
|
|
|
change (λ_ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
2024-10-19 09:47:23 +00:00
|
|
|
|
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj
|
|
|
|
|
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
|
|
|
|
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
|
|
|
|
|
(((lift.obj S.FDiscrete).μIso
|
|
|
|
|
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
|
|
|
|
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
|
|
|
|
|
((PiTensorProduct.tprod S.k) fun i_1 =>
|
|
|
|
|
(lift.discreteFunctorMapEqIso S.FDiscrete _)
|
|
|
|
|
((lift.discreteFunctorMapEqIso S.FDiscrete _)
|
|
|
|
|
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
|
|
|
|
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm i_1)))))))) = _
|
2024-10-18 16:08:17 +00:00
|
|
|
|
rw [lift.μIso_inv_tprod]
|
|
|
|
|
change (λ_ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
2024-10-19 09:47:23 +00:00
|
|
|
|
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj
|
|
|
|
|
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
|
|
|
|
((TensorProduct.map (S.contrFin1Fin1 c i j h).hom.hom
|
|
|
|
|
((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
|
|
|
|
|
(((PiTensorProduct.tprod S.k) fun i_1 =>
|
|
|
|
|
(lift.discreteFunctorMapEqIso S.FDiscrete _)
|
|
|
|
|
((lift.discreteFunctorMapEqIso S.FDiscrete _) (x
|
|
|
|
|
((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
|
|
|
|
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm
|
|
|
|
|
(Sum.inl i_1)))))) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun i_1 =>
|
|
|
|
|
(lift.discreteFunctorMapEqIso S.FDiscrete _) ((lift.discreteFunctorMapEqIso S.FDiscrete _)
|
2024-10-19 09:19:29 +00:00
|
|
|
|
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
|
|
|
|
((Hom.toEquiv
|
|
|
|
|
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm (Sum.inr i_1)))))))) = _
|
2024-10-18 16:08:17 +00:00
|
|
|
|
rw [TensorProduct.map_tmul]
|
|
|
|
|
rw [contrFin1Fin1_hom_hom_tprod]
|
|
|
|
|
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V,
|
|
|
|
|
Action.instMonoidalCategory_tensorUnit_V, Fin.isValue, mk_hom, Function.comp_apply,
|
|
|
|
|
Discrete.functor_obj_eq_as, instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv,
|
|
|
|
|
Equiv.refl_symm, Functor.id_obj, ModuleCat.MonoidalCategory.whiskerRight_apply]
|
|
|
|
|
rw [Action.instMonoidalCategory_leftUnitor_hom_hom]
|
2024-10-19 09:19:29 +00:00
|
|
|
|
simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue,
|
|
|
|
|
ModuleCat.MonoidalCategory.leftUnitor_hom_apply]
|
2024-10-18 16:08:17 +00:00
|
|
|
|
congr 1
|
|
|
|
|
/- The contraction. -/
|
2024-10-19 09:19:29 +00:00
|
|
|
|
· simp only [Fin.isValue, castToField]
|
2024-10-18 16:08:17 +00:00
|
|
|
|
congr 2
|
2024-10-19 09:19:29 +00:00
|
|
|
|
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
|
|
|
|
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
2024-10-18 16:08:17 +00:00
|
|
|
|
rfl
|
2024-10-19 09:47:23 +00:00
|
|
|
|
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
|
|
|
|
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
2024-10-18 16:08:17 +00:00
|
|
|
|
change (S.FDiscrete.map (eqToHom _)).hom
|
|
|
|
|
(x (((HepLean.Fin.finExtractTwo i j)).symm ((Sum.inl (Sum.inr 0))))) = _
|
2024-10-19 09:19:29 +00:00
|
|
|
|
simp only [Nat.succ_eq_add_one, Fin.isValue]
|
2024-10-18 16:08:17 +00:00
|
|
|
|
have h1' {a b d: Fin n.succ.succ} (hbd : b =d) (h : c d = S.τ (c a)) (h' : c b = S.τ (c a)) :
|
2024-10-19 09:19:29 +00:00
|
|
|
|
(S.FDiscrete.map (Discrete.eqToHom (h))).hom (x d) =
|
|
|
|
|
(S.FDiscrete.map (Discrete.eqToHom h')).hom (x b) := by
|
2024-10-18 16:08:17 +00:00
|
|
|
|
subst hbd
|
|
|
|
|
rfl
|
|
|
|
|
refine h1' ?_ ?_ ?_
|
2024-10-19 09:19:29 +00:00
|
|
|
|
simp only [Nat.succ_eq_add_one, Fin.isValue, HepLean.Fin.finExtractTwo_symm_inl_inr_apply]
|
2024-10-18 16:08:17 +00:00
|
|
|
|
simp [h]
|
|
|
|
|
/- The tensor. -/
|
|
|
|
|
· erw [lift.map_tprod]
|
|
|
|
|
apply congrArg
|
|
|
|
|
funext d
|
2024-10-19 09:19:29 +00:00
|
|
|
|
simp only [mk_hom, Function.comp_apply, lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
|
|
|
|
|
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom,
|
|
|
|
|
Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
2024-10-18 16:08:17 +00:00
|
|
|
|
change (S.FDiscrete.map (eqToHom _)).hom
|
2024-10-19 09:19:29 +00:00
|
|
|
|
((x ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr (d))))) = _
|
|
|
|
|
simp only [Nat.succ_eq_add_one]
|
2024-10-19 09:47:23 +00:00
|
|
|
|
have h1 : ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr d))
|
|
|
|
|
= (i.succAbove (j.succAbove d)) := HepLean.Fin.finExtractTwo_symm_inr_apply i j d
|
2024-10-18 16:08:17 +00:00
|
|
|
|
have h1' {a b : Fin n.succ.succ} (h : a = b) :
|
|
|
|
|
(S.FDiscrete.map (eqToHom (by rw [h]))).hom (x a) = x b := by
|
|
|
|
|
subst h
|
|
|
|
|
simp
|
|
|
|
|
exact h1' h1
|
2024-10-18 09:46:27 +00:00
|
|
|
|
|
2024-10-07 12:20:53 +00:00
|
|
|
|
end TensorStruct
|
|
|
|
|
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- A syntax tree for tensor expressions. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
inductive TensorTree (S : TensorStruct) : ∀ {n : ℕ}, (Fin n → S.C) → Type where
|
2024-10-16 16:38:36 +00:00
|
|
|
|
/-- A general tensor node. -/
|
2024-10-08 07:52:55 +00:00
|
|
|
|
| tensorNode {n : ℕ} {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) : TensorTree S c
|
2024-10-16 16:38:36 +00:00
|
|
|
|
/-- A node consisting of a single vector. -/
|
|
|
|
|
| vecNode {c : S.C} (v : S.FDiscrete.obj (Discrete.mk c)) : TensorTree S ![c]
|
|
|
|
|
/-- A node consisting of a two tensor. -/
|
|
|
|
|
| twoNode {c1 c2 : S.C}
|
2024-10-17 11:43:33 +00:00
|
|
|
|
(v : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)).V) :
|
2024-10-16 16:38:36 +00:00
|
|
|
|
TensorTree S ![c1, c2]
|
|
|
|
|
/-- A node consisting of a three tensor. -/
|
|
|
|
|
| threeNode {c1 c2 c3 : S.C}
|
|
|
|
|
(v : S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
|
|
|
|
|
S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3]
|
|
|
|
|
/-- A general constant node. -/
|
|
|
|
|
| constNode {n : ℕ} {c : Fin n → S.C} (T : 𝟙_ (Rep S.k S.G) ⟶ S.F.obj (OverColor.mk c)) :
|
|
|
|
|
TensorTree S c
|
|
|
|
|
/-- A constant vector. -/
|
|
|
|
|
| constVecNode {c : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c)) :
|
|
|
|
|
TensorTree S ![c]
|
|
|
|
|
/-- A constant two tensor (e.g. metric and unit). -/
|
|
|
|
|
| constTwoNode {c1 c2 : S.C}
|
|
|
|
|
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) :
|
|
|
|
|
TensorTree S ![c1, c2]
|
|
|
|
|
/-- A constant three tensor (e.g. Pauli-matrices). -/
|
|
|
|
|
| constThreeNode {c1 c2 c3 : S.C}
|
|
|
|
|
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
|
|
|
|
|
S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3]
|
|
|
|
|
/-- A node corresponding to the addition of two tensors. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| add {n : ℕ} {c : Fin n → S.C} : TensorTree S c → TensorTree S c → TensorTree S c
|
2024-10-16 16:38:36 +00:00
|
|
|
|
/-- A node corresponding to the permutation of indices of a tensor. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
|
|
|
|
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) : TensorTree S c1
|
|
|
|
|
| prod {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
|
|
|
|
(t : TensorTree S c) (t1 : TensorTree S c1) : TensorTree S (Sum.elim c c1 ∘ finSumFinEquiv.symm)
|
2024-10-08 15:45:51 +00:00
|
|
|
|
| smul {n : ℕ} {c : Fin n → S.C} : S.k → TensorTree S c → TensorTree S c
|
2024-10-17 11:43:33 +00:00
|
|
|
|
/-- The negative of a node. -/
|
|
|
|
|
| neg {n : ℕ} {c : Fin n → S.C} : TensorTree S c → TensorTree S c
|
2024-10-16 16:38:36 +00:00
|
|
|
|
| contr {n : ℕ} {c : Fin n.succ.succ → S.C} : (i : Fin n.succ.succ) →
|
|
|
|
|
(j : Fin n.succ) → (h : c (i.succAbove j) = S.τ (c i)) → TensorTree S c →
|
|
|
|
|
TensorTree S (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
|
2024-10-08 07:26:23 +00:00
|
|
|
|
| eval {n : ℕ} {c : Fin n.succ → S.C} :
|
|
|
|
|
(i : Fin n.succ) → (x : Fin (S.evalNo (c i))) → TensorTree S c →
|
2024-10-08 07:52:55 +00:00
|
|
|
|
TensorTree S (c ∘ Fin.succAbove i)
|
2024-10-07 12:20:53 +00:00
|
|
|
|
|
|
|
|
|
namespace TensorTree
|
|
|
|
|
|
|
|
|
|
variable {S : TensorStruct} {n : ℕ} {c : Fin n → S.C} (T : TensorTree S c)
|
|
|
|
|
|
|
|
|
|
open MonoidalCategory
|
|
|
|
|
open TensorProduct
|
|
|
|
|
|
2024-10-16 16:38:36 +00:00
|
|
|
|
/-- The node `twoNode` of a tensor tree, with all arguments explicit. -/
|
|
|
|
|
abbrev twoNodeE (S : TensorStruct) (c1 c2 : S.C)
|
2024-10-17 11:43:33 +00:00
|
|
|
|
(v : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)).V) :
|
2024-10-16 16:38:36 +00:00
|
|
|
|
TensorTree S ![c1, c2] := twoNode v
|
|
|
|
|
|
|
|
|
|
/-- The node `constTwoNodeE` of a tensor tree, with all arguments explicit. -/
|
|
|
|
|
abbrev constTwoNodeE (S : TensorStruct) (c1 c2 : S.C)
|
2024-10-16 16:42:20 +00:00
|
|
|
|
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) :
|
2024-10-16 16:38:36 +00:00
|
|
|
|
TensorTree S ![c1, c2] := constTwoNode v
|
|
|
|
|
|
|
|
|
|
/-- The node `constThreeNodeE` of a tensor tree, with all arguments explicit. -/
|
2024-10-16 16:42:20 +00:00
|
|
|
|
abbrev constThreeNodeE (S : TensorStruct) (c1 c2 c3 : S.C)
|
|
|
|
|
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
|
2024-10-16 16:38:36 +00:00
|
|
|
|
S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] :=
|
|
|
|
|
constThreeNode v
|
|
|
|
|
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- The number of nodes in a tensor tree. -/
|
|
|
|
|
def size : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → ℕ := fun
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| tensorNode _ => 1
|
2024-10-16 16:38:36 +00:00
|
|
|
|
| vecNode _ => 1
|
|
|
|
|
| twoNode _ => 1
|
|
|
|
|
| threeNode _ => 1
|
|
|
|
|
| constNode _ => 1
|
|
|
|
|
| constVecNode _ => 1
|
|
|
|
|
| constTwoNode _ => 1
|
|
|
|
|
| constThreeNode _ => 1
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| add t1 t2 => t1.size + t2.size + 1
|
|
|
|
|
| perm _ t => t.size + 1
|
2024-10-17 11:43:33 +00:00
|
|
|
|
| neg t => t.size + 1
|
2024-10-08 15:45:51 +00:00
|
|
|
|
| smul _ t => t.size + 1
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| prod t1 t2 => t1.size + t2.size + 1
|
2024-10-16 16:38:36 +00:00
|
|
|
|
| contr _ _ _ t => t.size + 1
|
2024-10-08 07:26:23 +00:00
|
|
|
|
| eval _ _ t => t.size + 1
|
2024-10-07 12:20:53 +00:00
|
|
|
|
|
|
|
|
|
noncomputable section
|
|
|
|
|
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- The underlying tensor a tensor tree corresponds to.
|
|
|
|
|
Note: This function is not fully defined yet. -/
|
|
|
|
|
def tensor : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → S.F.obj (OverColor.mk c) := fun
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| tensorNode t => t
|
2024-10-17 11:43:33 +00:00
|
|
|
|
| constTwoNode t => (OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom (t.hom (1 : S.k))
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| add t1 t2 => t1.tensor + t2.tensor
|
|
|
|
|
| perm σ t => (S.F.map σ).hom t.tensor
|
2024-10-17 11:43:33 +00:00
|
|
|
|
| neg t => - t.tensor
|
2024-10-08 15:45:51 +00:00
|
|
|
|
| smul a t => a • t.tensor
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| prod t1 t2 => (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom
|
|
|
|
|
((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor))
|
2024-10-16 16:42:20 +00:00
|
|
|
|
| contr i j h t => (S.contrMap _ i j h).hom t.tensor
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| _ => 0
|
|
|
|
|
|
2024-10-17 11:43:33 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Tensor on different nodes.
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
@[simp]
|
2024-10-19 15:26:57 +00:00
|
|
|
|
lemma tensorNode_tensor {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) :
|
2024-10-07 12:20:53 +00:00
|
|
|
|
(tensorNode T).tensor = T := rfl
|
|
|
|
|
|
2024-10-17 11:43:33 +00:00
|
|
|
|
@[simp]
|
|
|
|
|
lemma constTwoNode_tensor {c1 c2 : S.C}
|
|
|
|
|
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) :
|
2024-10-19 09:47:23 +00:00
|
|
|
|
(constTwoNode v).tensor =
|
|
|
|
|
(OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom (v.hom (1 : S.k)) :=
|
2024-10-17 11:43:33 +00:00
|
|
|
|
rfl
|
|
|
|
|
|
2024-10-19 09:47:23 +00:00
|
|
|
|
lemma prod_tensor {c1 : Fin n → S.C} {c2 : Fin m → S.C} (t1 : TensorTree S c1)
|
|
|
|
|
(t2 : TensorTree S c2) :
|
2024-10-17 11:43:33 +00:00
|
|
|
|
(prod t1 t2).tensor = (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom
|
2024-10-19 09:19:29 +00:00
|
|
|
|
((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor)) := rfl
|
2024-10-17 11:43:33 +00:00
|
|
|
|
|
|
|
|
|
lemma add_tensor (t1 t2 : TensorTree S c) : (add t1 t2).tensor = t1.tensor + t2.tensor := rfl
|
|
|
|
|
|
|
|
|
|
lemma perm_tensor (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) :
|
|
|
|
|
(perm σ t).tensor = (S.F.map σ).hom t.tensor := rfl
|
|
|
|
|
|
2024-10-19 09:47:23 +00:00
|
|
|
|
lemma contr_tensor {n : ℕ} {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ}
|
|
|
|
|
{h : c (i.succAbove j) = S.τ (c i)} (t : TensorTree S c) :
|
|
|
|
|
(contr i j h t).tensor = (S.contrMap c i j h).hom t.tensor := rfl
|
2024-10-17 11:43:33 +00:00
|
|
|
|
|
|
|
|
|
lemma neg_tensor (t : TensorTree S c) : (neg t).tensor = - t.tensor := rfl
|
|
|
|
|
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Equality of tensors and rewrites.
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
lemma contr_tensor_eq {n : ℕ} {c : Fin n.succ.succ → S.C} {T1 T2 : TensorTree S c}
|
|
|
|
|
(h : T1.tensor = T2.tensor) {i : Fin n.succ.succ} {j : Fin n.succ}
|
|
|
|
|
{h' : c (i.succAbove j) = S.τ (c i)} :
|
|
|
|
|
(contr i j h' T1).tensor = (contr i j h' T2).tensor := by
|
|
|
|
|
simp only [Nat.succ_eq_add_one, contr_tensor]
|
|
|
|
|
rw [h]
|
|
|
|
|
|
|
|
|
|
lemma prod_tensor_eq_fst {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
2024-10-19 09:19:29 +00:00
|
|
|
|
{T1 T1' : TensorTree S c} { T2 : TensorTree S c1}
|
2024-10-17 11:43:33 +00:00
|
|
|
|
(h : T1.tensor = T1'.tensor) :
|
|
|
|
|
(prod T1 T2).tensor = (prod T1' T2).tensor := by
|
2024-10-19 09:19:29 +00:00
|
|
|
|
simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V,
|
|
|
|
|
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
|
|
|
|
Action.FunctorCategoryEquivalence.functor_obj_obj]
|
2024-10-17 11:43:33 +00:00
|
|
|
|
rw [h]
|
|
|
|
|
|
|
|
|
|
lemma prod_tensor_eq_snd {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
|
|
|
|
{T1 : TensorTree S c} {T2 T2' : TensorTree S c1}
|
|
|
|
|
(h : T2.tensor = T2'.tensor) :
|
|
|
|
|
(prod T1 T2).tensor = (prod T1 T2').tensor := by
|
2024-10-19 09:19:29 +00:00
|
|
|
|
simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V,
|
|
|
|
|
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
|
|
|
|
Action.FunctorCategoryEquivalence.functor_obj_obj]
|
2024-10-17 11:43:33 +00:00
|
|
|
|
rw [h]
|
|
|
|
|
|
2024-10-21 05:38:22 +00:00
|
|
|
|
lemma perm_tensor_eq {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
|
|
|
|
{σ : (OverColor.mk c) ⟶ (OverColor.mk c1)} {T1 T2 : TensorTree S c}
|
|
|
|
|
(h : T1.tensor = T2.tensor) :
|
|
|
|
|
(perm σ T1).tensor = (perm σ T2).tensor := by
|
|
|
|
|
simp only [perm_tensor]
|
|
|
|
|
rw [h]
|
|
|
|
|
|
2024-10-07 12:20:53 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end TensorTree
|
2024-10-15 06:08:56 +00:00
|
|
|
|
|
|
|
|
|
end
|