2024-05-10 16:57:45 -04:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
2024-07-12 16:39:44 -04:00
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
2024-05-10 16:57:45 -04:00
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
2024-06-25 07:06:32 -04:00
|
|
|
|
import Mathlib.Analysis.Complex.Basic
|
2024-05-10 16:57:45 -04:00
|
|
|
|
/-!
|
|
|
|
|
# The Clifford Algebra
|
|
|
|
|
|
|
|
|
|
This file defines the Gamma matrices.
|
|
|
|
|
|
|
|
|
|
-/
|
2024-07-09 16:31:26 -04:00
|
|
|
|
/-! TODO: Prove algebra generated by gamma matrices is isomorphic to Clifford algebra. -/
|
|
|
|
|
/-! TODO: Define relations between the gamma matrices. -/
|
2024-05-14 08:25:03 -04:00
|
|
|
|
namespace spaceTime
|
2024-05-10 16:57:45 -04:00
|
|
|
|
open Complex
|
|
|
|
|
|
|
|
|
|
noncomputable section diracRepresentation
|
|
|
|
|
|
2024-05-14 08:25:03 -04:00
|
|
|
|
/-- The γ⁰ gamma matrix in the Dirac representation. -/
|
2024-05-10 16:57:45 -04:00
|
|
|
|
def γ0 : Matrix (Fin 4) (Fin 4) ℂ :=
|
2024-11-04 20:08:57 -05:00
|
|
|
|
!![1, 0, 0, 0; 0, 1, 0, 0; 0, 0, -1, 0; 0, 0, 0, -1]
|
2024-05-10 16:57:45 -04:00
|
|
|
|
|
2024-05-14 08:25:03 -04:00
|
|
|
|
/-- The γ¹ gamma matrix in the Dirac representation. -/
|
2024-05-10 16:57:45 -04:00
|
|
|
|
def γ1 : Matrix (Fin 4) (Fin 4) ℂ :=
|
2024-11-04 20:08:57 -05:00
|
|
|
|
!![0, 0, 0, 1; 0, 0, 1, 0; 0, -1, 0, 0; -1, 0, 0, 0]
|
2024-05-10 16:57:45 -04:00
|
|
|
|
|
2024-05-14 08:25:03 -04:00
|
|
|
|
/-- The γ² gamma matrix in the Dirac representation. -/
|
2024-05-10 16:57:45 -04:00
|
|
|
|
def γ2 : Matrix (Fin 4) (Fin 4) ℂ :=
|
2024-11-04 20:08:57 -05:00
|
|
|
|
!![0, 0, 0, - I; 0, 0, I, 0; 0, I, 0, 0; -I, 0, 0, 0]
|
2024-05-10 16:57:45 -04:00
|
|
|
|
|
2024-05-14 08:25:03 -04:00
|
|
|
|
/-- The γ³ gamma matrix in the Dirac representation. -/
|
2024-05-10 16:57:45 -04:00
|
|
|
|
def γ3 : Matrix (Fin 4) (Fin 4) ℂ :=
|
2024-11-04 20:08:57 -05:00
|
|
|
|
!![0, 0, 1, 0; 0, 0, 0, -1; -1, 0, 0, 0; 0, 1, 0, 0]
|
2024-05-10 16:57:45 -04:00
|
|
|
|
|
2024-05-14 08:25:03 -04:00
|
|
|
|
/-- The γ⁵ gamma matrix in the Dirac representation. -/
|
2024-05-10 16:57:45 -04:00
|
|
|
|
def γ5 : Matrix (Fin 4) (Fin 4) ℂ := I • (γ0 * γ1 * γ2 * γ3)
|
|
|
|
|
|
2024-05-14 08:25:03 -04:00
|
|
|
|
/-- The γ gamma matrices in the Dirac representation. -/
|
2024-05-10 16:57:45 -04:00
|
|
|
|
@[simp]
|
|
|
|
|
def γ : Fin 4 → Matrix (Fin 4) (Fin 4) ℂ := ![γ0, γ1, γ2, γ3]
|
|
|
|
|
|
|
|
|
|
namespace γ
|
|
|
|
|
|
2024-05-13 07:42:55 -04:00
|
|
|
|
open spaceTime
|
2024-05-10 16:57:45 -04:00
|
|
|
|
|
2024-05-13 07:42:55 -04:00
|
|
|
|
variable (μ ν : Fin 4)
|
2024-05-10 16:57:45 -04:00
|
|
|
|
|
2024-05-14 08:25:03 -04:00
|
|
|
|
/-- The subset of `Matrix (Fin 4) (Fin 4) ℂ` formed by the gamma matrices in the Dirac
|
|
|
|
|
representation. -/
|
2024-05-10 16:57:45 -04:00
|
|
|
|
@[simp]
|
|
|
|
|
def γSet : Set (Matrix (Fin 4) (Fin 4) ℂ) := {γ i | i : Fin 4}
|
|
|
|
|
|
|
|
|
|
lemma γ_in_γSet (μ : Fin 4) : γ μ ∈ γSet := by
|
|
|
|
|
simp [γSet]
|
|
|
|
|
|
2024-05-14 08:25:03 -04:00
|
|
|
|
/-- The algebra generated by the gamma matrices in the Dirac representation. -/
|
2024-05-10 16:57:45 -04:00
|
|
|
|
def diracAlgebra : Subalgebra ℝ (Matrix (Fin 4) (Fin 4) ℂ) :=
|
|
|
|
|
Algebra.adjoin ℝ γSet
|
|
|
|
|
|
|
|
|
|
lemma γSet_subset_diracAlgebra : γSet ⊆ diracAlgebra :=
|
|
|
|
|
Algebra.subset_adjoin
|
|
|
|
|
|
|
|
|
|
lemma γ_in_diracAlgebra (μ : Fin 4) : γ μ ∈ diracAlgebra :=
|
|
|
|
|
γSet_subset_diracAlgebra (γ_in_γSet μ)
|
|
|
|
|
|
|
|
|
|
end γ
|
|
|
|
|
|
|
|
|
|
end diracRepresentation
|
2024-05-14 08:25:03 -04:00
|
|
|
|
end spaceTime
|