128 lines
4 KiB
Text
128 lines
4 KiB
Text
![]() |
/-
|
|||
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
Authors: Joseph Tooby-Smith
|
|||
|
-/
|
|||
|
import HepLean.Meta.Informal
|
|||
|
import HepLean.SpaceTime.SL2C.Basic
|
|||
|
import Mathlib.RepresentationTheory.Rep
|
|||
|
import Mathlib.Logic.Equiv.TransferInstance
|
|||
|
/-!
|
|||
|
|
|||
|
## Modules associated with Real Lorentz vectors
|
|||
|
|
|||
|
We define the modules underlying real Lorentz vectors.
|
|||
|
|
|||
|
-/
|
|||
|
|
|||
|
namespace Lorentz
|
|||
|
|
|||
|
noncomputable section
|
|||
|
open Matrix
|
|||
|
open MatrixGroups
|
|||
|
open Complex
|
|||
|
|
|||
|
/-- The module for contravariant (up-index) real Lorentz vectors. -/
|
|||
|
structure ContrℝModule (d : ℕ) where
|
|||
|
/-- The underlying value as a vector `Fin 1 ⊕ Fin d → ℝ`. -/
|
|||
|
val : Fin 1 ⊕ Fin d → ℝ
|
|||
|
|
|||
|
namespace ContrℝModule
|
|||
|
|
|||
|
variable {d : ℕ}
|
|||
|
|
|||
|
/-- The equivalence between `ContrℝModule` and `Fin 1 ⊕ Fin d → ℂ`. -/
|
|||
|
def toFin1dℝFun : ContrℝModule d ≃ (Fin 1 ⊕ Fin d → ℝ) where
|
|||
|
toFun v := v.val
|
|||
|
invFun f := ⟨f⟩
|
|||
|
left_inv _ := rfl
|
|||
|
right_inv _ := rfl
|
|||
|
|
|||
|
/-- The instance of `AddCommMonoid` on `ContrℝModule` defined via its equivalence
|
|||
|
with `Fin 1 ⊕ Fin d → ℝ`. -/
|
|||
|
instance : AddCommMonoid (ContrℝModule d) := Equiv.addCommMonoid toFin1dℝFun
|
|||
|
|
|||
|
/-- The instance of `AddCommGroup` on `ContrℝModule` defined via its equivalence
|
|||
|
with `Fin 1 ⊕ Fin d → ℝ`. -/
|
|||
|
instance : AddCommGroup (ContrℝModule d) := Equiv.addCommGroup toFin1dℝFun
|
|||
|
|
|||
|
/-- The instance of `Module` on `ContrℝModule` defined via its equivalence
|
|||
|
with `Fin 1 ⊕ Fin d → ℝ`. -/
|
|||
|
instance : Module ℝ (ContrℝModule d) := Equiv.module ℝ toFin1dℝFun
|
|||
|
|
|||
|
@[ext]
|
|||
|
lemma ext (ψ ψ' : ContrℝModule d) (h : ψ.val = ψ'.val) : ψ = ψ' := by
|
|||
|
cases ψ
|
|||
|
cases ψ'
|
|||
|
subst h
|
|||
|
rfl
|
|||
|
|
|||
|
@[simp]
|
|||
|
lemma val_add (ψ ψ' : ContrℝModule d) : (ψ + ψ').val = ψ.val + ψ'.val := rfl
|
|||
|
|
|||
|
@[simp]
|
|||
|
lemma val_smul (r : ℝ) (ψ : ContrℝModule d) : (r • ψ).val = r • ψ.val := rfl
|
|||
|
|
|||
|
/-- The linear equivalence between `ContrℝModule` and `(Fin 1 ⊕ Fin d → ℝ)`. -/
|
|||
|
@[simps!]
|
|||
|
def toFin1dℝEquiv : ContrℝModule d ≃ₗ[ℝ] (Fin 1 ⊕ Fin d → ℝ) where
|
|||
|
toFun := toFin1dℝFun
|
|||
|
map_add' := fun _ _ => rfl
|
|||
|
map_smul' := fun _ _ => rfl
|
|||
|
invFun := toFin1dℝFun.symm
|
|||
|
left_inv := fun _ => rfl
|
|||
|
right_inv := fun _ => rfl
|
|||
|
|
|||
|
/-- The underlying element of `Fin 1 ⊕ Fin d → ℝ` of a element in `ContrℝModule` defined
|
|||
|
through the linear equivalence `toFin1dℝEquiv`. -/
|
|||
|
abbrev toFin1dℝ (ψ : ContrℝModule d) := toFin1dℝEquiv ψ
|
|||
|
|
|||
|
end ContrℝModule
|
|||
|
|
|||
|
/-- The module for covariant (up-index) complex Lorentz vectors. -/
|
|||
|
structure CoℝModule (d : ℕ) where
|
|||
|
/-- The underlying value as a vector `Fin 1 ⊕ Fin d → ℝ`. -/
|
|||
|
val : Fin 1 ⊕ Fin d → ℝ
|
|||
|
|
|||
|
namespace CoℝModule
|
|||
|
|
|||
|
variable {d : ℕ}
|
|||
|
|
|||
|
/-- The equivalence between `CoℝModule` and `Fin 1 ⊕ Fin d → ℝ`. -/
|
|||
|
def toFin1dℝFun : CoℝModule d ≃ (Fin 1 ⊕ Fin d → ℝ) where
|
|||
|
toFun v := v.val
|
|||
|
invFun f := ⟨f⟩
|
|||
|
left_inv _ := rfl
|
|||
|
right_inv _ := rfl
|
|||
|
|
|||
|
/-- The instance of `AddCommMonoid` on `CoℂModule` defined via its equivalence
|
|||
|
with `Fin 1 ⊕ Fin d → ℝ`. -/
|
|||
|
instance : AddCommMonoid (CoℝModule d) := Equiv.addCommMonoid toFin1dℝFun
|
|||
|
|
|||
|
/-- The instance of `AddCommGroup` on `CoℝModule` defined via its equivalence
|
|||
|
with `Fin 1 ⊕ Fin d → ℝ`. -/
|
|||
|
instance : AddCommGroup (CoℝModule d) := Equiv.addCommGroup toFin1dℝFun
|
|||
|
|
|||
|
/-- The instance of `Module` on `CoℝModule` defined via its equivalence
|
|||
|
with `Fin 1 ⊕ Fin d → ℝ`. -/
|
|||
|
instance : Module ℝ (CoℝModule d) := Equiv.module ℝ toFin1dℝFun
|
|||
|
|
|||
|
/-- The linear equivalence between `CoℝModule` and `(Fin 1 ⊕ Fin d → ℝ)`. -/
|
|||
|
@[simps!]
|
|||
|
def toFin1dℝEquiv : CoℝModule d ≃ₗ[ℝ] (Fin 1 ⊕ Fin d → ℝ) where
|
|||
|
toFun := toFin1dℝFun
|
|||
|
map_add' := fun _ _ => rfl
|
|||
|
map_smul' := fun _ _ => rfl
|
|||
|
invFun := toFin1dℝFun.symm
|
|||
|
left_inv := fun _ => rfl
|
|||
|
right_inv := fun _ => rfl
|
|||
|
|
|||
|
/-- The underlying element of `Fin 1 ⊕ Fin d → ℝ` of a element in `CoℝModule` defined
|
|||
|
through the linear equivalence `toFin1dℝEquiv`. -/
|
|||
|
abbrev toFin13ℂ (ψ : CoℝModule d) := toFin1dℝEquiv ψ
|
|||
|
|
|||
|
end CoℝModule
|
|||
|
|
|||
|
end
|
|||
|
end Lorentz
|