PhysLean/HepLean/PerturbationTheory/WickContraction/Erase.lean

161 lines
5.8 KiB
Text
Raw Normal View History

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.Uncontracted
/-!
# Erasing an element from a contraction
-/
open FieldStruct
variable {𝓕 : FieldStruct}
namespace WickContraction
variable {n : } (c : WickContraction n)
open HepLean.List
open HepLean.Fin
/-- Given a Wick contraction `WickContraction n.succ` and a `i : Fin n.succ` the
Wick contraction associated with `n` obtained by removing `i`.
If `i` is contracted with `j` in the new Wick contraction `j` will be uncontracted. -/
def erase (c : WickContraction n.succ) (i : Fin n.succ) : WickContraction n := by
refine ⟨Finset.filter (fun x => Finset.map i.succAboveEmb x ∈ c.1) Finset.univ, ?_, ?_⟩
· intro a ha
simpa using c.2.1 (Finset.map i.succAboveEmb a) (by simpa using ha)
· intro a ha b hb
simp only [Nat.succ_eq_add_one, Finset.mem_filter, Finset.mem_univ, true_and] at ha hb
rw [← Finset.disjoint_map i.succAboveEmb, ← (Finset.map_injective i.succAboveEmb).eq_iff]
exact c.2.2 _ ha _ hb
lemma mem_erase_uncontracted_iff (c : WickContraction n.succ) (i : Fin n.succ) (j : Fin n) :
j ∈ (c.erase i).uncontracted ↔
i.succAbove j ∈ c.uncontracted c.getDual? (i.succAbove j) = some i := by
rw [getDual?_eq_some_iff_mem]
simp only [uncontracted, getDual?, erase, Nat.succ_eq_add_one, Finset.mem_filter, Finset.mem_univ,
Finset.map_insert, Fin.succAboveEmb_apply, Finset.map_singleton, true_and]
rw [Fin.find_eq_none_iff, Fin.find_eq_none_iff]
apply Iff.intro
· intro h
by_cases hi : {i.succAbove j, i} ∈ c.1
· simp [hi]
· apply Or.inl
intro k
by_cases hi' : k = i
· subst hi'
exact hi
· simp only [← Fin.exists_succAbove_eq_iff] at hi'
obtain ⟨z, hz⟩ := hi'
subst hz
exact h z
· intro h
intro k
rcases h with h | h
· exact h (i.succAbove k)
· by_contra hn
have hc := c.2.2 _ h _ hn
simp only [Nat.succ_eq_add_one, Finset.disjoint_insert_right, Finset.mem_insert,
Finset.mem_singleton, true_or, not_true_eq_false, Finset.disjoint_singleton_right, not_or,
false_and, or_false] at hc
have hi : i ∈ ({i.succAbove j, i.succAbove k} : Finset (Fin n.succ)) := by
simp [← hc]
simp only [Nat.succ_eq_add_one, Finset.mem_insert, Finset.mem_singleton] at hi
rcases hi with hi | hi
· exact False.elim (Fin.succAbove_ne _ _ hi.symm)
· exact False.elim (Fin.succAbove_ne _ _ hi.symm)
lemma mem_not_eq_erase_of_isSome (c : WickContraction n.succ) (i : Fin n.succ)
(h : (c.getDual? i).isSome) (ha : a ∈ c.1) (ha2 : a ≠ {i, (c.getDual? i).get h}) :
∃ a', a' ∈ (c.erase i).1 ∧ a = Finset.map i.succAboveEmb a' := by
have h2a := c.2.1 a ha
rw [@Finset.card_eq_two] at h2a
obtain ⟨x, y, hx,hy⟩ := h2a
subst hy
have hxn : ¬ x = i := by
by_contra hx
subst hx
rw [← @getDual?_eq_some_iff_mem] at ha
rw [(Option.get_of_mem h ha)] at ha2
simp at ha2
have hyn : ¬ y = i := by
by_contra hy
subst hy
rw [@Finset.pair_comm] at ha
rw [← @getDual?_eq_some_iff_mem] at ha
rw [(Option.get_of_mem h ha)] at ha2
simp [Finset.pair_comm] at ha2
simp only [Nat.succ_eq_add_one, ← Fin.exists_succAbove_eq_iff] at hxn hyn
obtain ⟨x', hx'⟩ := hxn
obtain ⟨y', hy'⟩ := hyn
use {x', y'}
subst hx' hy'
simp only [erase, Nat.succ_eq_add_one, Finset.mem_filter, Finset.mem_univ, Finset.map_insert,
Fin.succAboveEmb_apply, Finset.map_singleton, true_and, and_true]
exact ha
lemma mem_not_eq_erase_of_isNone (c : WickContraction n.succ) (i : Fin n.succ)
(h : (c.getDual? i).isNone) (ha : a ∈ c.1) :
∃ a', a' ∈ (c.erase i).1 ∧ a = Finset.map i.succAboveEmb a' := by
have h2a := c.2.1 a ha
rw [@Finset.card_eq_two] at h2a
obtain ⟨x, y, hx,hy⟩ := h2a
subst hy
have hi : i ∈ c.uncontracted := by
simp only [Nat.succ_eq_add_one, uncontracted, Finset.mem_filter, Finset.mem_univ, true_and]
simp_all only [Nat.succ_eq_add_one, Option.isNone_iff_eq_none, ne_eq]
rw [@mem_uncontracted_iff_not_contracted] at hi
have hxn : ¬ x = i := by
by_contra hx
subst hx
exact hi {x, y} ha (by simp)
have hyn : ¬ y = i := by
by_contra hy
subst hy
exact hi {x, y} ha (by simp)
simp only [Nat.succ_eq_add_one, ← Fin.exists_succAbove_eq_iff] at hxn hyn
obtain ⟨x', hx'⟩ := hxn
obtain ⟨y', hy'⟩ := hyn
use {x', y'}
subst hx' hy'
simp only [erase, Nat.succ_eq_add_one, Finset.mem_filter, Finset.mem_univ, Finset.map_insert,
Fin.succAboveEmb_apply, Finset.map_singleton, true_and, and_true]
exact ha
/-- Given a Wick contraction `c : WickContraction n.succ` and a `i : Fin n.succ` the (optional)
element of `(erase c i).uncontracted` which comes from the element in `c` contracted
with `i`. -/
def getDualErase {n : } (c : WickContraction n.succ) (i : Fin n.succ) :
Option ((erase c i).uncontracted) := by
match n with
| 0 => exact none
| Nat.succ n =>
refine if hj : (c.getDual? i).isSome then some ⟨(predAboveI i ((c.getDual? i).get hj)), ?_⟩
else none
rw [mem_erase_uncontracted_iff]
apply Or.inr
rw [succsAbove_predAboveI, getDual?_eq_some_iff_mem]
· simp
· apply c.getDual?_eq_some_neq _ _ _
simp
@[simp]
lemma getDualErase_isSome_iff_getDual?_isSome (c : WickContraction n.succ) (i : Fin n.succ) :
(c.getDualErase i).isSome ↔ (c.getDual? i).isSome := by
match n with
| 0 =>
fin_cases i
simp [getDualErase]
| Nat.succ n =>
simp [getDualErase]
@[simp]
lemma getDualErase_one (c : WickContraction 1) (i : Fin 1) :
c.getDualErase i = none := by
fin_cases i
simp [getDualErase]
end WickContraction