PhysLean/HepLean/FeynmanDiagrams/Wick/String.lean

111 lines
4.3 KiB
Text
Raw Normal View History

2024-11-22 15:12:06 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.FeynmanDiagrams.Basic
/-!
# Wick strings
Currently this file is only for an example of Wick strings, correpsonding to a
theory with two complex scalar fields. The concepts will however generalize.
A wick string is defined to be a sequence of input fields,
followed by a squence of vertices, followed by a sequence of output fields.
A wick string can be combined with an appropriate map to spacetime to produce a specific
term in the ring of operators. This has yet to be implemented.
-/
namespace TwoComplexScalar
open CategoryTheory
open FeynmanDiagram
open PreFeynmanRule
/-- The colors of edges which one can associate with a vertex for a theory
with two complex scalar fields. -/
inductive 𝓔 where
/-- Corresponds to the first complex scalar field flowing out of a vertex. -/
| complexScalarOut₁ : 𝓔
/-- Corresponds to the first complex scalar field flowing into a vertex. -/
| complexScalarIn₁ : 𝓔
/-- Corresponds to the second complex scalar field flowing out of a vertex. -/
| complexScalarOut₂ : 𝓔
/-- Corresponds to the second complex scalar field flowing into a vertex. -/
| complexScalarIn₂ : 𝓔
/-- The map taking each color to it's dual, specifying how we can contract edges. -/
def ξ : 𝓔𝓔
| 𝓔.complexScalarOut₁ => 𝓔.complexScalarIn₁
| 𝓔.complexScalarIn₁ => 𝓔.complexScalarOut₁
| 𝓔.complexScalarOut₂ => 𝓔.complexScalarIn₂
| 𝓔.complexScalarIn₂ => 𝓔.complexScalarOut₂
/-- The function `ξ` is an involution. -/
lemma ξ_involutive : Function.Involutive ξ := by
intro x
match x with
| 𝓔.complexScalarOut₁ => rfl
| 𝓔.complexScalarIn₁ => rfl
| 𝓔.complexScalarOut₂ => rfl
| 𝓔.complexScalarIn₂ => rfl
/-- The vertices associated with two complex scalars.
We call this type, the type of vertex colors. -/
inductive 𝓥 where
| φ₁φ₁φ₂φ₂ : 𝓥
| φ₁φ₁φ₁φ₁ : 𝓥
| φ₂φ₂φ₂φ₂ : 𝓥
/-- To each vertex, the association of the number of edges. -/
@[nolint unusedArguments]
def 𝓥NoEdges : 𝓥 := fun _ => 4
/-- To each vertex, associates the indexing map of half-edges associated with that edge. -/
def 𝓥Edges (v : 𝓥) : Fin (𝓥NoEdges v) → 𝓔 :=
match v with
| 𝓥.φ₁φ₁φ₂φ₂ => fun i =>
match i with
| (0 : Fin 4)=> 𝓔.complexScalarOut₁
| (1 : Fin 4) => 𝓔.complexScalarIn₁
| (2 : Fin 4) => 𝓔.complexScalarOut₂
| (3 : Fin 4) => 𝓔.complexScalarIn₂
| 𝓥.φ₁φ₁φ₁φ₁ => fun i =>
match i with
| (0 : Fin 4)=> 𝓔.complexScalarOut₁
| (1 : Fin 4) => 𝓔.complexScalarIn₁
| (2 : Fin 4) => 𝓔.complexScalarOut₁
| (3 : Fin 4) => 𝓔.complexScalarIn₁
| 𝓥.φ₂φ₂φ₂φ₂ => fun i =>
match i with
| (0 : Fin 4)=> 𝓔.complexScalarOut₂
| (1 : Fin 4) => 𝓔.complexScalarIn₂
| (2 : Fin 4) => 𝓔.complexScalarOut₂
| (3 : Fin 4) => 𝓔.complexScalarIn₂
inductive WickStringLast where
| incoming : WickStringLast
| vertex : WickStringLast
| outgoing : WickStringLast
| final : WickStringLast
open WickStringLast
/-- A wick string is a representation of a string of fields from a theory.
E.g. `φ(x1) φ(x2) φ(y) φ(y) φ(y) φ(x3)`. The use of vertices in the Wick string
allows us to identify which fields have the same space-time coordinate. -/
inductive WickString : {n : } → (c : Fin n → 𝓔) → WickStringLast → Type where
| empty : WickString Fin.elim0 incoming
| incoming {n : } {c : Fin n → 𝓔} (w : WickString c incoming) (e : 𝓔) :
WickString (Fin.cons e c) incoming
| endIncoming {n : } {c : Fin n → 𝓔} (w : WickString c incoming) : WickString c vertex
| vertex {n : } {c : Fin n → 𝓔} (w : WickString c vertex) (v : 𝓥) :
WickString (Fin.append (𝓥Edges v) c) vertex
| endVertex {n : } {c : Fin n → 𝓔} (w : WickString c vertex) : WickString c outgoing
| outgoing {n : } {c : Fin n → 𝓔} (w : WickString c outgoing) (e : 𝓔) :
WickString (Fin.cons e c) outgoing
| endOutgoing {n : } {c : Fin n → 𝓔} (w : WickString c outgoing) : WickString c final
end TwoComplexScalar