PhysLean/HepLean/SpaceTime/LorentzGroup/Basic.lean

230 lines
7.2 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.Metric
import HepLean.SpaceTime.FourVelocity
import Mathlib.GroupTheory.SpecificGroups.KleinFour
import Mathlib.Geometry.Manifold.Algebra.LieGroup
import Mathlib.Analysis.Matrix
/-!
# The Lorentz Group
We define the Lorentz group.
## TODO
- Show that the Lorentz is a Lie group.
- Prove that the restricted Lorentz group is equivalent to the connected component of the
identity.
- Define the continuous maps from `ℝ³` to `restrictedLorentzGroup` defining boosts.
## References
- http://home.ku.edu.tr/~amostafazadeh/phys517_518/phys517_2016f/Handouts/A_Jaffi_Lorentz_Group.pdf
-/
noncomputable section
namespace spaceTime
open Manifold
open Matrix
open Complex
open ComplexConjugate
/-- We say a matrix `Λ` preserves `ηLin` if for all `x` and `y`,
`ηLin (Λ *ᵥ x) (Λ *ᵥ y) = ηLin x y`. -/
def PreservesηLin (Λ : Matrix (Fin 4) (Fin 4) ) : Prop :=
∀ (x y : spaceTime), ηLin (Λ *ᵥ x) (Λ *ᵥ y) = ηLin x y
namespace PreservesηLin
variable (Λ : Matrix (Fin 4) (Fin 4) )
lemma iff_on_right : PreservesηLin Λ ↔
∀ (x y : spaceTime), ηLin x ((η * Λᵀ * η * Λ) *ᵥ y) = ηLin x y := by
apply Iff.intro
intro h
intro x y
have h1 := h x y
rw [ηLin_mulVec_left, mulVec_mulVec] at h1
exact h1
intro h
intro x y
rw [ηLin_mulVec_left, mulVec_mulVec]
exact h x y
lemma iff_matrix : PreservesηLin Λ ↔ η * Λᵀ * η * Λ = 1 := by
rw [iff_on_right, ηLin_matrix_eq_identity_iff (η * Λᵀ * η * Λ)]
apply Iff.intro
· simp_all [ηLin, implies_true, iff_true, one_mulVec]
· simp_all only [ηLin, LinearMap.coe_mk, AddHom.coe_mk, linearMapForSpaceTime_apply,
mulVec_mulVec, implies_true]
lemma iff_matrix' : PreservesηLin Λ ↔ Λ * (η * Λᵀ * η) = 1 := by
rw [iff_matrix]
apply Iff.intro
intro h
exact mul_eq_one_comm.mp h
intro h
exact mul_eq_one_comm.mp h
lemma iff_transpose : PreservesηLin Λ ↔ PreservesηLin Λᵀ := by
apply Iff.intro
intro h
have h1 := congrArg transpose ((iff_matrix Λ).mp h)
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
← mul_assoc, transpose_one] at h1
rw [iff_matrix' Λ.transpose, ← h1]
repeat rw [← mul_assoc]
intro h
have h1 := congrArg transpose ((iff_matrix Λ.transpose).mp h)
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
← mul_assoc, transpose_one, transpose_transpose] at h1
rw [iff_matrix', ← h1]
repeat rw [← mul_assoc]
/-- The lift of a matrix which preserves `ηLin` to an invertible matrix. -/
def liftGL {Λ : Matrix (Fin 4) (Fin 4) } (h : PreservesηLin Λ) : GL (Fin 4) :=
⟨Λ, η * Λᵀ * η , (iff_matrix' Λ).mp h , (iff_matrix Λ).mp h⟩
2024-05-22 13:34:53 -04:00
lemma mul {Λ Λ' : Matrix (Fin 4) (Fin 4) } (h : PreservesηLin Λ) (h' : PreservesηLin Λ') :
PreservesηLin (Λ * Λ') := by
intro x y
rw [← mulVec_mulVec, ← mulVec_mulVec, h, h']
2024-05-22 13:34:53 -04:00
lemma one : PreservesηLin 1 := by
intro x y
simp
2024-05-22 13:34:53 -04:00
lemma η : PreservesηLin η := by
simp [iff_matrix, η_transpose, η_sq]
2024-05-22 13:34:53 -04:00
end PreservesηLin
2024-05-22 13:34:53 -04:00
/-- The Lorentz group is the subset of matrices which preserve ηLin. -/
def lorentzGroup : Type := {Λ : Matrix (Fin 4) (Fin 4) // PreservesηLin Λ}
@[simps mul_coe one_coe inv div]
instance lorentzGroupIsGroup : Group lorentzGroup where
mul A B := ⟨A.1 * B.1, PreservesηLin.mul A.2 B.2⟩
mul_assoc A B C := by
apply Subtype.eq
exact Matrix.mul_assoc A.1 B.1 C.1
one := ⟨1, PreservesηLin.one⟩
one_mul A := by
apply Subtype.eq
exact Matrix.one_mul A.1
mul_one A := by
apply Subtype.eq
exact Matrix.mul_one A.1
inv A := ⟨η * A.1ᵀ * η , PreservesηLin.mul (PreservesηLin.mul PreservesηLin.η
((PreservesηLin.iff_transpose A.1).mp A.2)) PreservesηLin.η⟩
mul_left_inv A := by
apply Subtype.eq
exact (PreservesηLin.iff_matrix A.1).mp A.2
/-- Notation for the Lorentz group. -/
scoped[spaceTime] notation (name := lorentzGroup_notation) "𝓛" => lorentzGroup
/-- `lorentzGroup` has the subtype topology. -/
instance : TopologicalSpace lorentzGroup := instTopologicalSpaceSubtype
2024-05-22 13:34:53 -04:00
namespace lorentzGroup
2024-05-22 13:34:53 -04:00
lemma coe_inv (A : 𝓛) : (A⁻¹).1 = A.1⁻¹:= by
refine (inv_eq_left_inv ?h).symm
exact (PreservesηLin.iff_matrix A.1).mp A.2
2024-05-22 13:34:53 -04:00
/-- The homomorphism of the Lorentz group into `GL (Fin 4) `. -/
def toGL : 𝓛 →* GL (Fin 4) where
toFun A := ⟨A.1, (A⁻¹).1, mul_eq_one_comm.mpr $ (PreservesηLin.iff_matrix A.1).mp A.2,
(PreservesηLin.iff_matrix A.1).mp A.2⟩
map_one' := by
simp
rfl
map_mul' x y := by
simp only [lorentzGroupIsGroup, _root_.mul_inv_rev, coe_inv]
ext
rfl
lemma toGL_injective : Function.Injective toGL := by
intro A B h
apply Subtype.eq
rw [@Units.ext_iff] at h
simpa using h
/-- The homomorphism from the Lorentz Group into the monoid of matrices times the opposite of
the monoid of matrices. -/
@[simps!]
def toProd : 𝓛 →* (Matrix (Fin 4) (Fin 4) ) × (Matrix (Fin 4) (Fin 4) )ᵐᵒᵖ :=
MonoidHom.comp (Units.embedProduct _) toGL
lemma toProd_eq_transpose_η : toProd A = (A.1, ⟨η * A.1ᵀ * η⟩) := rfl
lemma toProd_injective : Function.Injective toProd := by
intro A B h
rw [toProd_eq_transpose_η, toProd_eq_transpose_η] at h
rw [@Prod.mk.inj_iff] at h
apply Subtype.eq
exact h.1
lemma toProd_continuous : Continuous toProd := by
change Continuous (fun A => (A.1, ⟨η * A.1ᵀ * η⟩))
refine continuous_prod_mk.mpr (And.intro ?_ ?_)
exact continuous_iff_le_induced.mpr fun U a => a
refine Continuous.comp' ?_ ?_
exact MulOpposite.continuous_op
refine Continuous.matrix_mul (Continuous.matrix_mul continuous_const ?_) continuous_const
refine Continuous.matrix_transpose ?_
exact continuous_iff_le_induced.mpr fun U a => a
/-- The embedding from the Lorentz Group into the monoid of matrices times the opposite of
the monoid of matrices. -/
lemma toProd_embedding : Embedding toProd where
inj := toProd_injective
induced := by
refine (inducing_iff ⇑toProd).mp ?_
refine inducing_of_inducing_compose toProd_continuous continuous_fst ?hgf
exact (inducing_iff (Prod.fst ∘ ⇑toProd)).mpr rfl
/-- The embedding from the Lorentz Group into `GL (Fin 4) `. -/
lemma toGL_embedding : Embedding toGL.toFun where
inj := toGL_injective
induced := by
refine ((fun {X} {t t'} => TopologicalSpace.ext_iff.mpr) ?_).symm
intro s
rw [TopologicalSpace.ext_iff.mp toProd_embedding.induced s ]
rw [isOpen_induced_iff, isOpen_induced_iff]
apply Iff.intro ?_ ?_
· intro h
obtain ⟨U, hU1, hU2⟩ := h
rw [isOpen_induced_iff] at hU1
obtain ⟨V, hV1, hV2⟩ := hU1
use V
simp [hV1]
rw [← hU2, ← hV2]
rfl
· intro h
obtain ⟨U, hU1, hU2⟩ := h
let t := (Units.embedProduct _) ⁻¹' U
use t
apply And.intro (isOpen_induced hU1)
exact hU2
instance : TopologicalGroup 𝓛 := Inducing.topologicalGroup toGL toGL_embedding.toInducing
2024-05-22 13:34:53 -04:00
/-- The transpose of an matrix in the Lorentz group is an element of the Lorentz group. -/
def transpose (Λ : lorentzGroup) : lorentzGroup := ⟨Λ.1ᵀ, (PreservesηLin.iff_transpose Λ.1).mp Λ.2⟩
end lorentzGroup
2024-05-22 13:34:53 -04:00
end spaceTime