PhysLean/HepLean/Tensors/TensorSpecies/UnitTensor.lean

111 lines
4.5 KiB
Text
Raw Normal View History

2024-11-14 15:26:31 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.Elab
import HepLean.Tensors.Tree.NodeIdentities.Basic
import HepLean.Tensors.Tree.NodeIdentities.Congr
/-!
## Units as tensors
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open OverColor
open HepLean.Fin
open TensorProduct
noncomputable section
namespace TensorSpecies
/-- The unit of a tensor species in a `PiTensorProduct`. -/
def unitTensor (S : TensorSpecies) (c : S.C) : S.F.obj (OverColor.mk ![S.τ c, c]) :=
(OverColor.Discrete.pairIsoSep S.FD).hom.hom ((S.unit.app (Discrete.mk c)).hom (1 : S.k))
variable {S : TensorSpecies}
open TensorTree
/-- The relation between two units of colors which are equal. -/
lemma unitTensor_congr {c c' : S.C} (h : c = c') : {S.unitTensor c | μ ν}ᵀ.tensor =
2024-11-15 10:44:42 +00:00
(perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by subst h; fin_cases x <;> rfl))
2024-11-14 15:26:31 +00:00
{S.unitTensor c' | μ ν}ᵀ).tensor := by
subst h
change _ = (S.F.map (𝟙 _)).hom (S.unitTensor c)
simp
lemma unitTensor_eq_dual_perm_eq (c : S.C) : ∀ (x : Fin (Nat.succ 0).succ),
2024-11-15 10:44:42 +00:00
![S.τ c, c] x = (![S.τ (S.τ c), S.τ c] ∘ ⇑(finMapToEquiv ![1, 0] ![1, 0]).symm) x := fun x => by
2024-11-14 15:26:31 +00:00
fin_cases x
· rfl
· exact (S.τ_involution c).symm
/-- The unit tensor is equal to a permutation of indices of the dual tensor. -/
lemma unitTensor_eq_dual_perm (c : S.C) : {S.unitTensor c | μ ν}ᵀ.tensor =
2024-11-15 10:44:42 +00:00
(perm (OverColor.equivToHomEq (finMapToEquiv ![1,0] ![1, 0]) (unitTensor_eq_dual_perm_eq c))
2024-11-14 15:26:31 +00:00
{S.unitTensor (S.τ c) | ν μ }ᵀ).tensor := by
simp [unitTensor, tensorNode_tensor, perm_tensor]
have h1 := S.unit_symm c
erw [h1]
have hg : (Discrete.pairIsoSep S.FD).hom.hom ∘ₗ (S.FD.obj { as := S.τ c } ◁
S.FD.map (Discrete.eqToHom (S.τ_involution c))).hom ∘ₗ
(β_ (S.FD.obj { as := S.τ (S.τ c) }) (S.FD.obj { as := S.τ c })).hom.hom =
(S.F.map (equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) (unitTensor_eq_dual_perm_eq c))).hom
∘ₗ (Discrete.pairIsoSep S.FD).hom.hom := by
apply TensorProduct.ext'
intro x y
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_whiskerLeft_hom,
LinearMap.coe_comp, Function.comp_apply, Fin.isValue]
change (Discrete.pairIsoSep S.FD).hom.hom
(((y ⊗ₜ[S.k] ((S.FD.map (Discrete.eqToHom _)).hom x)))) =
((S.F.map (equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) _)).hom ∘ₗ
(Discrete.pairIsoSep S.FD).hom.hom) (x ⊗ₜ[S.k] y)
rw [Discrete.pairIsoSep_tmul]
conv_rhs =>
simp [Discrete.pairIsoSep_tmul]
change _ =
(S.F.map (equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) _)).hom
((Discrete.pairIsoSep S.FD).hom.hom (x ⊗ₜ[S.k] y))
rw [Discrete.pairIsoSep_tmul]
simp only [F_def, Nat.succ_eq_add_one, Nat.reduceAdd, mk_hom, Functor.id_obj, Fin.isValue]
erw [OverColor.lift.map_tprod]
apply congrArg
funext i
fin_cases i
· simp only [Fin.zero_eta, Fin.isValue, Matrix.cons_val_zero, Fin.cases_zero, mk_hom,
Nat.succ_eq_add_one, Nat.reduceAdd, lift.discreteFunctorMapEqIso, eqToIso_refl,
Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
rfl
· simp only [Fin.mk_one, Fin.isValue, Matrix.cons_val_one, Matrix.head_cons, mk_hom,
Nat.succ_eq_add_one, Nat.reduceAdd, lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, LinearEquiv.ofLinear_apply]
rfl
2024-11-15 10:44:42 +00:00
exact congrFun (congrArg (fun f => f.toFun) hg) _
2024-11-14 15:26:31 +00:00
lemma dual_unitTensor_eq_perm_eq (c : S.C) : ∀ (x : Fin (Nat.succ 0).succ),
![S.τ (S.τ c), S.τ c] x = (![S.τ c, c] ∘ ⇑(finMapToEquiv ![1, 0] ![1, 0]).symm) x := fun x => by
fin_cases x
· exact (S.τ_involution c)
· rfl
lemma dual_unitTensor_eq_perm (c : S.C) : {S.unitTensor (S.τ c) | ν μ}ᵀ.tensor =
(perm (OverColor.equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) (dual_unitTensor_eq_perm_eq c))
{S.unitTensor c | μ ν}ᵀ).tensor := by
rw [unitTensor_eq_dual_perm]
conv =>
lhs
rw [perm_tensor_eq <| unitTensor_congr (S.τ_involution c)]
rw [perm_perm]
refine perm_congr ?_ rfl
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue]
rfl
end TensorSpecies
end