PhysLean/HepLean/Tensors/Tree/NodeIdentities/ProdContr.lean

369 lines
16 KiB
Text
Raw Normal View History

2024-10-25 19:29:41 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.Basic
/-!
## Products and contractions
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open OverColor
open HepLean.Fin
namespace TensorTree
variable {S : TensorSpecies}
namespace ContrPair
variable {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} (q : ContrPair c)
/-!
## Left contractions.
-/
2024-10-27 17:07:45 +00:00
2024-10-25 19:29:41 +00:00
/-- An equivalence needed to perform contraction. For specified `n` and `n1`
this reduces to an identity. -/
def leftContrEquivSuccSucc : Fin (n.succ.succ + n1) ≃ Fin ((n + n1).succ.succ) :=
(Fin.castOrderIso (by omega)).toEquiv
/-- An equivalence needed to perform contraction. For specified `n` and `n1`
this reduces to an identity. -/
def leftContrEquivSucc : Fin (n.succ + n1) ≃ Fin ((n + n1).succ) :=
(Fin.castOrderIso (by omega)).toEquiv
def leftContrI (n1 : ): Fin ((n + n1).succ.succ) := leftContrEquivSuccSucc <| Fin.castAdd n1 q.i
def leftContrJ (n1 : ) : Fin ((n + n1).succ) := leftContrEquivSucc <| Fin.castAdd n1 q.j
@[simp]
lemma leftContrJ_succAbove_leftContrI : (q.leftContrI n1).succAbove (q.leftContrJ n1)
= leftContrEquivSuccSucc (Fin.castAdd n1 (q.i.succAbove q.j)) := by
rw [leftContrI, leftContrJ]
rw [Fin.ext_iff]
simp only [Fin.succAbove, Nat.succ_eq_add_one, leftContrEquivSucc, RelIso.coe_fn_toEquiv,
Fin.castOrderIso_apply, leftContrEquivSuccSucc, Fin.coe_cast, Fin.coe_castAdd]
split_ifs
<;> rename_i h1 h2
<;> rw [Fin.lt_def] at h1 h2
· simp only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd]
· simp_all only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd, not_true_eq_false]
· simp_all only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd, not_lt, Fin.val_succ,
add_right_eq_self, one_ne_zero]
omega
· simp only [Fin.val_succ, Fin.coe_cast, Fin.coe_castAdd]
lemma succAbove_leftContrJ_leftContrI_castAdd (x : Fin n) :
(q.leftContrI n1).succAbove ((q.leftContrJ n1).succAbove (Fin.castAdd n1 x)) =
leftContrEquivSuccSucc (Fin.castAdd n1 (q.i.succAbove (q.j.succAbove x))) := by
rw [Fin.ext_iff]
simp [leftContrI, leftContrJ, leftContrEquivSuccSucc, Fin.succAbove]
split_ifs <;> rename_i h1 h2 h3 h4
<;> rw [Fin.lt_def] at h1 h2 h3 h4
<;> simp_all [leftContrEquivSucc]
<;> omega
lemma succAbove_leftContrJ_leftContrI_natAdd (x : Fin n1) :
(q.leftContrI n1).succAbove ((q.leftContrJ n1).succAbove (Fin.natAdd n x)) =
leftContrEquivSuccSucc (Fin.natAdd n.succ.succ x) := by
rw [Fin.ext_iff]
simp [leftContrI, leftContrJ, leftContrEquivSuccSucc, Fin.succAbove]
split_ifs <;> rename_i h1 h2
<;> rw [Fin.lt_def] at h1 h2
<;> simp_all [leftContrEquivSucc]
<;> omega
2024-10-25 19:29:41 +00:00
def leftContr : ContrPair ((Sum.elim c c1 ∘ (@finSumFinEquiv n.succ.succ n1).symm.toFun) ∘
leftContrEquivSuccSucc.symm) where
i := q.leftContrI n1
j := q.leftContrJ n1
h := by
simp only [Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrJ_succAbove_leftContrI,
Function.comp_apply, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
simpa only [leftContrI, Nat.succ_eq_add_one, Equiv.symm_apply_apply,
finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl] using q.h
lemma leftContr_map_eq : ((Sum.elim c (OverColor.mk c1).hom ∘ finSumFinEquiv.symm.toFun) ∘ ⇑leftContrEquivSuccSucc.symm) ∘
(q.leftContr (c1 := c1)).i.succAbove ∘ (q.leftContr (c1 := c1)).j.succAbove =
Sum.elim (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).hom (OverColor.mk c1).hom ∘
⇑finSumFinEquiv.symm := by
funext x
simp only [Nat.succ_eq_add_one, Functor.id_obj, mk_hom, Equiv.toFun_as_coe, Function.comp_apply,
Functor.const_obj_obj]
obtain ⟨k, hk⟩ := finSumFinEquiv.surjective x
subst hk
match k with
| Sum.inl k =>
simp only [finSumFinEquiv_apply_left, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl,
Function.comp_apply]
erw [succAbove_leftContrJ_leftContrI_castAdd]
simp only [Nat.succ_eq_add_one, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd,
Sum.elim_inl]
| Sum.inr k =>
simp only [finSumFinEquiv_apply_right, finSumFinEquiv_symm_apply_natAdd, Sum.elim_inr]
erw [succAbove_leftContrJ_leftContrI_natAdd]
simp only [Nat.succ_eq_add_one, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_natAdd,
Sum.elim_inr]
2024-10-25 19:29:41 +00:00
2024-10-27 17:07:45 +00:00
set_option maxHeartbeats 0 in
2024-10-25 19:29:41 +00:00
lemma contrMap_prod :
(q.contrMap ▷ S.F.obj (OverColor.mk c1)) ≫ (S.F.μ _ ((OverColor.mk c1))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom =
(S.F.μ ((OverColor.mk c)) ((OverColor.mk c1))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫
S.F.map (OverColor.equivToIso leftContrEquivSuccSucc).hom ≫ q.leftContr.contrMap
≫ S.F.map (OverColor.mkIso (q.leftContr_map_eq)).hom := by
ext1
refine HepLean.PiTensorProduct.induction_tmul (fun p q' => ?_)
2024-10-27 17:07:45 +00:00
change (S.F.map (equivToIso finSumFinEquiv).hom).hom
((S.F.μ (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)) (OverColor.mk c1)).hom
((q.contrMap.hom (PiTensorProduct.tprod S.k p)) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))
= (S.F.map (mkIso _).hom).hom
(q.leftContr.contrMap.hom
((S.F.map (equivToIso (@leftContrEquivSuccSucc n n1)).hom).hom
((S.F.map (equivToIso finSumFinEquiv).hom).hom
((S.F.μ (OverColor.mk c) (OverColor.mk c1)).hom
((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q')))))
conv_lhs => rw [contrMap, TensorSpecies.contrMap_tprod]
simp only [TensorSpecies.F_def]
conv_rhs => rw [lift.obj_μ_tprod_tmul]
simp only [TensorProduct.smul_tmul, TensorProduct.tmul_smul, map_smul]
conv_lhs => rw [lift.obj_μ_tprod_tmul]
change _ = ((lift.obj S.FDiscrete).map (mkIso _).hom).hom
(q.leftContr.contrMap.hom
(((lift.obj S.FDiscrete).map (equivToIso leftContrEquivSuccSucc).hom).hom
(((lift.obj S.FDiscrete).map (equivToIso finSumFinEquiv).hom).hom
((PiTensorProduct.tprod S.k) _))))
conv_rhs => rw [lift.map_tprod]
change _ = ((lift.obj S.FDiscrete).map (mkIso _).hom).hom
(q.leftContr.contrMap.hom
(((lift.obj S.FDiscrete).map (equivToIso leftContrEquivSuccSucc).hom).hom
(
((PiTensorProduct.tprod S.k) _))))
conv_rhs => rw [lift.map_tprod]
change _ = ((lift.obj S.FDiscrete).map (mkIso _).hom).hom
(q.leftContr.contrMap.hom
((PiTensorProduct.tprod S.k) _))
conv_rhs => rw [contrMap, TensorSpecies.contrMap_tprod]
simp only [TensorProduct.smul_tmul, TensorProduct.tmul_smul, map_smul]
have hL (a : Fin n.succ.succ) {b : Fin (n + 1 + 1) ⊕ Fin n1}
(h : b = Sum.inl a) : p a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp ))).hom
((lift.discreteSumEquiv S.FDiscrete b)
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
subst h
simp only [Nat.succ_eq_add_one, mk_hom, instMonoidalCategoryStruct_tensorObj_hom,
Sum.elim_inl, eqToHom_refl, Discrete.functor_map_id, Action.id_hom, Functor.id_obj,
ModuleCat.id_apply]
rfl
2024-10-27 17:07:45 +00:00
congr 1
/- The contraction. -/
· apply congrArg
simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj,
Discrete.functor_obj_eq_as, Function.comp_apply, Nat.succ_eq_add_one, mk_hom,
Equiv.toFun_as_coe, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.id_obj,
instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
have h1' : ∀ {a a' b c b' c'} (haa' : a = a')
(_ : b = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom b')
(_ : c = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom c'),
(S.contr.app a).hom (b ⊗ₜ[S.k] c) = (S.contr.app a').hom (b' ⊗ₜ[S.k] c') := by
intro a a' b c b' c' haa' hbc hcc
subst haa'
simp_all
refine h1' ?_ ?_ ?_
· simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI,
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
· erw [ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply]
simp only [AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, equivToIso_homToEquiv,
LinearEquiv.coe_coe]
apply hL
2024-10-27 17:07:45 +00:00
exact Eq.symm ((fun f => (Equiv.apply_eq_iff_eq_symm_apply f).mp) finSumFinEquiv rfl)
· erw [ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply,
ModuleCat.id_apply]
simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe,
LinearMap.coe_toAddHom, equivToIso_homToEquiv]
change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫ S.FDiscrete.map (Discrete.eqToHom _)).hom _
rw [← S.FDiscrete.map_comp]
simp only [eqToHom_trans]
2024-10-27 17:07:45 +00:00
/- a = q.i.succAbove q.j, d = q.i, b = (finSumFinEquiv.symm (leftContrEquivSuccSucc.symm (q.leftContr.i.succAbove q.leftContr.j))
h : c (q.i.succAbove q.j) = S.τ (c q.i) -/
have h1 {a d : Fin n.succ.succ} {b : Fin (n + 1 + 1) ⊕ Fin n1}
(h1' : b = Sum.inl a) (h2' : c a = S.τ (c d)) :
(S.FDiscrete.map (Discrete.eqToHom h2')).hom (p a) =
(S.FDiscrete.map (eqToHom (by subst h1'; simpa using h2'))).hom
((lift.discreteSumEquiv S.FDiscrete b)
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
subst h1'
rfl
apply h1
erw [leftContrJ_succAbove_leftContrI]
simp only [Nat.succ_eq_add_one, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd]
/- The tensor. -/
· rw [lift.map_tprod]
conv_lhs => erw [lift.map_tprod]
apply congrArg
funext k
simp only [ Functor.id_obj, mk_hom, Function.comp_apply,
equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, instMonoidalCategoryStruct_tensorObj_hom,
LinearEquiv.ofLinear_apply, Equiv.toFun_as_coe, equivToIso_mkIso_hom, Equiv.refl_symm,
Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv]
conv_rhs => repeat erw [ModuleCat.id_apply]
simp only [Nat.succ_eq_add_one, AddHom.toFun_eq_coe, LinearMap.coe_toAddHom,
LinearEquiv.coe_coe]
2024-10-27 17:07:45 +00:00
change _ = (S.FDiscrete.map (eqToHom _)).hom
((lift.discreteSumEquiv S.FDiscrete
(finSumFinEquiv.symm
(leftContrEquivSuccSucc.symm
(q.leftContr.i.succAbove
(q.leftContr.j.succAbove k)))))
(HepLean.PiTensorProduct.elimPureTensor p q'
(finSumFinEquiv.symm
(leftContrEquivSuccSucc.symm
(q.leftContr.i.succAbove
(q.leftContr.j.succAbove k))))))
have h1 (l : (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).left ⊕ (OverColor.mk c1).left)
(l' : Fin n.succ.succ ⊕ Fin n1)
(h : Sum.elim c c1 l' = Sum.elim (c ∘ q.i.succAbove ∘ q.j.succAbove) c1 l)
(h' : l' = (Sum.map (q.i.succAbove ∘ q.j.succAbove) id l))
: (lift.discreteSumEquiv S.FDiscrete l)
(HepLean.PiTensorProduct.elimPureTensor (fun k => p (q.i.succAbove (q.j.succAbove k))) q' l) =
(S.FDiscrete.map (eqToHom (by simp [h] ))).hom
((lift.discreteSumEquiv S.FDiscrete l')
(HepLean.PiTensorProduct.elimPureTensor p q' l')) := by
subst h'
match l with
| Sum.inl l =>
simp only [Nat.succ_eq_add_one, instMonoidalCategoryStruct_tensorObj_hom, mk_hom,
Sum.elim_inl, Function.comp_apply, Functor.id_obj, Sum.map_inl, eqToHom_refl,
Discrete.functor_map_id, Action.id_hom, ModuleCat.id_apply]
rfl
| Sum.inr l =>
simp only [Nat.succ_eq_add_one, instMonoidalCategoryStruct_tensorObj_hom, mk_hom,
Sum.elim_inr, Functor.id_obj, Function.comp_apply, Sum.map_inr, id_eq, eqToHom_refl,
Discrete.functor_map_id, Action.id_hom, ModuleCat.id_apply]
rfl
refine h1 _ _ ?_ ?_
· simpa using Discrete.eqToIso.proof_1
(Hom.toEquiv_comp_inv_apply (mkIso (leftContr_map_eq q)).hom k)
· obtain ⟨k, hk⟩ := finSumFinEquiv.surjective k
subst hk
erw [Equiv.symm_apply_apply]
match k with
| Sum.inl k =>
simp only [Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContr, finSumFinEquiv_apply_left,
Sum.map_inl, Function.comp_apply]
rw [succAbove_leftContrJ_leftContrI_castAdd]
simp only [Nat.succ_eq_add_one, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd]
| Sum.inr k =>
simp [finSumFinEquiv_apply_left, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl, leftContr]
rw [succAbove_leftContrJ_leftContrI_natAdd]
simp only [Nat.succ_eq_add_one, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_natAdd]
2024-10-25 19:29:41 +00:00
/-!
## Right contractions.
-/
def rightContrI (n1 : ): Fin ((n1 + n).succ.succ) := Fin.natAdd n1 q.i
def rightContrJ (n1 : ) : Fin ((n1 + n).succ) := Fin.natAdd n1 q.j
@[simp]
lemma rightContrJ_succAbove_rightContrI : (q.rightContrI n1).succAbove (q.rightContrJ n1)
= (Fin.natAdd n1 (q.i.succAbove q.j)) := by
rw [rightContrI, rightContrJ]
rw [Fin.ext_iff]
simp only [Fin.succAbove, Nat.succ_eq_add_one, Fin.coe_natAdd]
split_ifs
<;> rename_i h1 h2
<;> rw [Fin.lt_def] at h1 h2
· simp only [Fin.coe_castSucc, Fin.coe_natAdd]
· simp_all only [Fin.coe_castSucc, Fin.coe_natAdd, add_lt_add_iff_left, not_true_eq_false]
· simp_all only [Fin.coe_castSucc, Fin.coe_natAdd, add_lt_add_iff_left, not_lt, Fin.val_succ,
add_right_eq_self, one_ne_zero]
omega
· simp only [Fin.val_succ, Fin.coe_natAdd]
omega
lemma succAbove_rightContrJ_rightContrI_castAdd (x : Fin n1) :
(q.rightContrI n1).succAbove ((q.rightContrJ n1).succAbove (Fin.castAdd n x)) =
(Fin.castAdd n.succ.succ x) := by
rw [Fin.ext_iff]
simp [rightContrI, rightContrJ, Fin.succAbove]
split_ifs <;> rename_i h1 h2
<;> rw [Fin.lt_def] at h1 h2
<;> simp_all
<;> omega
lemma succAbove_rightContrJ_rightContrI_natAdd (x : Fin n) :
(q.rightContrI n1).succAbove ((q.rightContrJ n1).succAbove (Fin.natAdd n1 x)) =
(Fin.natAdd n1 ((q.i.succAbove) (q.j.succAbove x))) := by
rw [Fin.ext_iff]
simp [rightContrI, rightContrJ, Fin.succAbove]
split_ifs <;> rename_i h1 h2 h3 h4
<;> rw [Fin.lt_def] at h1 h2 h3 h4
<;> simp_all
<;> omega
def rightContr : ContrPair ((Sum.elim c1 c ∘ (@finSumFinEquiv n1 n.succ.succ).symm.toFun)) where
i := q.rightContrI n1
j := q.rightContrJ n1
h := by
simp only [Nat.add_eq, Nat.succ_eq_add_one, Equiv.toFun_as_coe,
rightContrJ_succAbove_rightContrI, Function.comp_apply, finSumFinEquiv_symm_apply_natAdd,
Sum.elim_inr]
simpa [rightContrI] using q.h
lemma rightContr_map_eq : ((Sum.elim c1 (OverColor.mk c).hom ∘ finSumFinEquiv.symm.toFun)) ∘
(q.rightContr (c1 := c1)).i.succAbove ∘ (q.rightContr (c1 := c1)).j.succAbove =
Sum.elim (OverColor.mk c1).hom (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).hom ∘
⇑finSumFinEquiv.symm := by
funext x
simp only [Nat.succ_eq_add_one, Functor.id_obj, mk_hom, Equiv.toFun_as_coe, Function.comp_apply,
Functor.const_obj_obj]
obtain ⟨k, hk⟩ := finSumFinEquiv.surjective x
subst hk
match k with
| Sum.inl k =>
simp only [finSumFinEquiv_apply_left, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
erw [succAbove_rightContrJ_rightContrI_castAdd]
simp only [Nat.succ_eq_add_one, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
| Sum.inr k =>
simp only [finSumFinEquiv_apply_right, finSumFinEquiv_symm_apply_natAdd, Sum.elim_inr]
erw [succAbove_rightContrJ_rightContrI_natAdd]
simp only [finSumFinEquiv_symm_apply_natAdd, Sum.elim_inr, Function.comp_apply]
lemma prod_contr :
(S.F.obj (OverColor.mk c1) ◁ q.contrMap) ≫ (S.F.μ ((OverColor.mk c1)) _) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom =
(S.F.μ ((OverColor.mk c1)) ((OverColor.mk c))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫
q.rightContr.contrMap ≫ S.F.map (OverColor.mkIso (q.rightContr_map_eq)).hom:= by
sorry
2024-10-25 19:29:41 +00:00
end ContrPair
theorem contr_prod {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ}
{j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i))
(t : TensorTree S c) (t1 : TensorTree S c1) :
(prod t t1).tensor = sorry :=by
sorry
end TensorTree