PhysLean/HepLean/SpaceTime/LorentzAlgebra/Basic.lean

110 lines
3.7 KiB
Text
Raw Normal View History

2024-05-24 15:33:29 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.Basic
2024-07-02 10:13:52 -04:00
import HepLean.SpaceTime.MinkowskiMetric
2024-05-24 15:33:29 -04:00
import Mathlib.Algebra.Lie.Classical
/-!
# The Lorentz Algebra
2024-06-09 14:33:56 -04:00
We define
- Define `lorentzAlgebra` via `LieAlgebra.Orthogonal.so'` as a subalgebra of
2024-07-02 10:13:52 -04:00
`Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) `.
2024-06-09 14:33:56 -04:00
- In `mem_iff` prove that a matrix is in the Lorentz algebra if and only if it satisfies the
condition `Aᵀ * η = - η * A`.
2024-05-24 15:33:29 -04:00
-/
namespace SpaceTime
2024-05-24 15:33:29 -04:00
open Matrix
open TensorProduct
2024-07-02 10:13:52 -04:00
/-- The Lorentz algebra as a subalgebra of `Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) `. -/
def lorentzAlgebra : LieSubalgebra (Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ) :=
2024-05-24 15:33:29 -04:00
(LieAlgebra.Orthogonal.so' (Fin 1) (Fin 3) )
namespace lorentzAlgebra
2024-07-02 10:13:52 -04:00
open minkowskiMatrix
2024-05-24 15:33:29 -04:00
lemma transpose_eta (A : lorentzAlgebra) : A.1ᵀ * η = - η * A.1 := by
2024-07-02 10:13:52 -04:00
have h1 := A.2
erw [mem_skewAdjointMatricesLieSubalgebra] at h1
simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using h1
lemma mem_of_transpose_eta_eq_eta_mul_self {A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) }
2024-05-24 15:33:29 -04:00
(h : Aᵀ * η = - η * A) : A ∈ lorentzAlgebra := by
2024-07-02 10:13:52 -04:00
erw [mem_skewAdjointMatricesLieSubalgebra]
simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using h
lemma mem_iff {A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) } :
A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A :=
2024-06-09 14:33:56 -04:00
Iff.intro (fun h => transpose_eta ⟨A, h⟩) (fun h => mem_of_transpose_eta_eq_eta_mul_self h)
2024-05-24 15:33:29 -04:00
2024-07-02 10:13:52 -04:00
lemma mem_iff' (A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ) :
A ∈ lorentzAlgebra ↔ A = - η * Aᵀ * η := by
2024-05-29 16:42:04 -04:00
rw [mem_iff]
2024-07-02 10:13:52 -04:00
refine Iff.intro (fun h => ?_) (fun h => ?_)
· trans -η * (Aᵀ * η)
rw [h]
trans (η * η) * A
rw [minkowskiMatrix.sq]
all_goals noncomm_ring
· nth_rewrite 2 [h]
trans (η * η) * Aᵀ * η
rw [minkowskiMatrix.sq]
all_goals noncomm_ring
lemma diag_comp (Λ : lorentzAlgebra) (μ : Fin 1 ⊕ Fin 3) : Λ.1 μ μ = 0 := by
2024-06-12 13:19:57 -04:00
have h := congrArg (fun M ↦ M μ μ) $ mem_iff.mp Λ.2
2024-07-02 10:13:52 -04:00
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, mul_diagonal,
transpose_apply, diagonal_neg, diagonal_mul, neg_mul] at h
rcases μ with μ | μ
simpa using h
simpa using h
lemma time_comps (Λ : lorentzAlgebra) (i : Fin 3) :
Λ.1 (Sum.inr i) (Sum.inl 0) = Λ.1 (Sum.inl 0) (Sum.inr i) := by
simpa only [Fin.isValue, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, mul_diagonal,
transpose_apply, Sum.elim_inr, mul_neg, mul_one, diagonal_neg, diagonal_mul, Sum.elim_inl,
neg_mul, one_mul, neg_inj] using congrArg (fun M ↦ M (Sum.inl 0) (Sum.inr i)) $ mem_iff.mp Λ.2
2024-06-12 13:19:57 -04:00
lemma space_comps (Λ : lorentzAlgebra) (i j : Fin 3) :
2024-07-02 10:13:52 -04:00
Λ.1 (Sum.inr i) (Sum.inr j) = - Λ.1 (Sum.inr j) (Sum.inr i) := by
simpa only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_neg, diagonal_mul,
Sum.elim_inr, neg_neg, one_mul, mul_diagonal, transpose_apply, mul_neg, mul_one] using
(congrArg (fun M ↦ M (Sum.inr i) (Sum.inr j)) $ mem_iff.mp Λ.2).symm
2024-06-12 13:19:57 -04:00
2024-05-24 15:33:29 -04:00
end lorentzAlgebra
@[simps!]
2024-07-02 10:13:52 -04:00
instance lorentzVectorAsLieRingModule : LieRingModule lorentzAlgebra (LorentzVector 3) where
2024-05-24 15:33:29 -04:00
bracket Λ x := Λ.1.mulVec x
add_lie Λ1 Λ2 x := by
simp [add_mulVec]
lie_add Λ x1 x2 := by
2024-05-29 16:42:04 -04:00
simp only
2024-05-24 15:33:29 -04:00
exact mulVec_add _ _ _
leibniz_lie Λ1 Λ2 x := by
simp [mulVec_add, Bracket.bracket, sub_mulVec]
@[simps!]
2024-07-02 10:13:52 -04:00
instance spaceTimeAsLieModule : LieModule lorentzAlgebra (LorentzVector 3) where
2024-05-24 15:33:29 -04:00
smul_lie r Λ x := by
simp [Bracket.bracket, smul_mulVec_assoc]
lie_smul r Λ x := by
simp [Bracket.bracket]
rw [mulVec_smul]
end SpaceTime