PhysLean/HepLean/SpaceTime/LorentzGroup/Rotations.lean

62 lines
1.9 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
2024-06-25 07:06:32 -04:00
import HepLean.SpaceTime.LorentzGroup.Basic
2024-06-26 14:04:18 -04:00
import HepLean.Mathematics.SO3.Basic
import Mathlib.Topology.Constructions
/-!
# Rotations
2024-07-02 10:13:52 -04:00
This file describes the embedding of `SO(3)` into `LorentzGroup 3`.
## TODO
Generalize to arbitrary dimensions.
-/
noncomputable section
2024-07-02 10:13:52 -04:00
namespace LorentzGroup
open GroupTheory
2024-05-22 13:34:53 -04:00
/-- Given a element of `SO(3)` the matrix corresponding to a space-time rotation. -/
2024-05-22 09:18:12 -04:00
@[simp]
2024-07-02 10:13:52 -04:00
def SO3ToMatrix (A : SO(3)) : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) :=
(Matrix.fromBlocks 1 0 0 A.1)
2024-05-22 09:18:12 -04:00
2024-07-02 10:13:52 -04:00
lemma SO3ToMatrix_in_LorentzGroup (A : SO(3)) : SO3ToMatrix A ∈ LorentzGroup 3 := by
rw [LorentzGroup.mem_iff_dual_mul_self]
simp only [minkowskiMetric.dual, minkowskiMatrix.as_block, SO3ToMatrix,
2024-05-22 09:18:12 -04:00
Matrix.fromBlocks_transpose, Matrix.transpose_one, Matrix.transpose_zero,
2024-07-02 10:13:52 -04:00
Matrix.fromBlocks_multiply, mul_one, Matrix.mul_zero, add_zero, Matrix.zero_mul, Matrix.mul_one,
neg_mul, one_mul, zero_add, Matrix.mul_neg, neg_zero, mul_neg, neg_neg,
Matrix.mul_eq_one_comm.mpr A.2.2, Matrix.fromBlocks_one]
2024-05-22 13:34:53 -04:00
lemma SO3ToMatrix_injective : Function.Injective SO3ToMatrix := by
intro A B h
erw [Equiv.apply_eq_iff_eq] at h
have h1 := congrArg Matrix.toBlocks₂₂ h
2024-07-02 10:13:52 -04:00
erw [Matrix.toBlocks_fromBlocks₂₂, Matrix.toBlocks_fromBlocks₂₂] at h1
2024-05-22 13:34:53 -04:00
apply Subtype.eq
exact h1
/-- Given a element of `SO(3)` the element of the Lorentz group corresponding to a
space-time rotation. -/
2024-07-02 10:13:52 -04:00
def SO3ToLorentz : SO(3) →* LorentzGroup 3 where
toFun A := ⟨SO3ToMatrix A, SO3ToMatrix_in_LorentzGroup A⟩
2024-05-22 13:34:53 -04:00
map_one' := by
apply Subtype.eq
simp only [SO3ToMatrix, Nat.reduceAdd, Matrix.reindex_apply, lorentzGroupIsGroup_one_coe]
erw [Matrix.fromBlocks_one]
map_mul' A B := by
apply Subtype.eq
simp [Matrix.fromBlocks_multiply]
2024-07-02 10:13:52 -04:00
end LorentzGroup
end