PhysLean/HepLean/SpaceTime/LorentzVector/Basic.lean

125 lines
3.1 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Data.Complex.Exponential
import Mathlib.Geometry.Manifold.SmoothManifoldWithCorners
import Mathlib.Analysis.InnerProductSpace.PiL2
import Mathlib.LinearAlgebra.Matrix.DotProduct
import LeanCopilot
/-!
# Lorentz vectors
(aka 4-vectors)
In this file we define a Lorentz vector (in 4d, this is more often called a 4-vector).
One of the most important example of a Lorentz vector is SpaceTime.
-/
/- The number of space dimensions . -/
variable (d : )
/-- The type of Lorentz Vectors in `d`-space dimensions. -/
def LorentzVector : Type := (Fin 1 ⊕ Fin d) →
/-- An instance of a additive commutative monoid on `LorentzVector`. -/
instance : AddCommMonoid (LorentzVector d) := Pi.addCommMonoid
/-- An instance of a module on `LorentzVector`. -/
noncomputable instance : Module (LorentzVector d) := Pi.module _ _ _
instance : AddCommGroup (LorentzVector d) := Pi.addCommGroup
2024-07-02 10:13:52 -04:00
/-- The structure of a topological space `LorentzVector d`. -/
instance : TopologicalSpace (LorentzVector d) :=
haveI : NormedAddCommGroup (LorentzVector d) := Pi.normedAddCommGroup
UniformSpace.toTopologicalSpace
namespace LorentzVector
variable {d : }
variable (v : LorentzVector d)
/-- The space components. -/
@[simp]
def space : EuclideanSpace (Fin d) := v ∘ Sum.inr
/-- The time component. -/
@[simp]
def time : := v (Sum.inl 0)
/-!
# The standard basis
-/
2024-07-02 10:13:52 -04:00
/-- The standard basis of `LorentzVector` indexed by `Fin 1 ⊕ Fin (d)`. -/
@[simps!]
noncomputable def stdBasis : Basis (Fin 1 ⊕ Fin (d)) (LorentzVector d) := Pi.basisFun _
2024-07-02 10:13:52 -04:00
scoped[LorentzVector] notation "e" => stdBasis
lemma stdBasis_apply (μ ν : Fin 1 ⊕ Fin d) : e μ ν = if μ = ν then 1 else 0 := by
rw [stdBasis]
erw [Pi.basisFun_apply]
simp
/-- The standard unit time vector. -/
2024-07-02 10:13:52 -04:00
noncomputable abbrev timeVec : (LorentzVector d) := e (Sum.inl 0)
@[simp]
lemma timeVec_space : (@timeVec d).space = 0 := by
funext i
2024-07-02 10:13:52 -04:00
simp only [space, Function.comp_apply, stdBasis_apply, Fin.isValue, ↓reduceIte, PiLp.zero_apply]
@[simp]
lemma timeVec_time: (@timeVec d).time = 1 := by
2024-07-02 10:13:52 -04:00
simp only [time, Fin.isValue, stdBasis_apply, ↓reduceIte]
/-!
# Reflection of space
-/
/-- The reflection of space as a linear map. -/
@[simps!]
def spaceReflectionLin : LorentzVector d →ₗ[] LorentzVector d where
toFun x := Sum.elim (x ∘ Sum.inl) (- x ∘ Sum.inr)
map_add' x y := by
funext i
rcases i with i | i
· simp only [Sum.elim_inl]
apply Eq.refl
· simp only [Sum.elim_inr, Pi.neg_apply]
apply neg_add
map_smul' c x := by
funext i
rcases i with i | i
· simp only [Sum.elim_inl, Pi.smul_apply]
apply smul_eq_mul
· simp [ HSMul.hSMul, SMul.smul]
/-- The reflection of space. -/
@[simp]
def spaceReflection : LorentzVector d := spaceReflectionLin v
@[simp]
lemma spaceReflection_space : v.spaceReflection.space = - v.space := by
rfl
@[simp]
lemma spaceReflection_time : v.spaceReflection.time = v.time := by
rfl
end LorentzVector