PhysLean/HepLean/Tensors/Tree/Basic.lean

897 lines
43 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.OverColor.Iso
2024-10-15 06:08:56 +00:00
import HepLean.Tensors.OverColor.Discrete
import HepLean.Tensors.OverColor.Lift
import Mathlib.CategoryTheory.Monoidal.NaturalTransformation
/-!
2024-10-31 07:42:50 +00:00
# Tensor species and trees
2024-10-31 09:35:59 +00:00
## Tensor species
- A tensor species is a structure including all of the ingredients needed to define a type of
tensor.
- Examples of tensor species will include real Lorentz tensors, complex Lorentz tensors, and
Einstien tensors.
- Tensor species are built upon symmetric monoidal categories.
2024-10-31 07:42:50 +00:00
## Trees
- Tensor trees provide an abstract way to represent tensor expressions.
- Their nodes are either tensors or operations between tensors.
- Every tensor tree has associated with an underlying tensor.
- This is not a one-to-one correspondence. Lots tensor trees represent the same tensor.
In the same way that lots of tensor expressions represent the same tensor.
- Define a sub-tensor tree as a node of a tensor tree and all child nodes thereof. One
can replace sub-tensor tree with another tensor tree which has the same underlying tensor
without changing the underlying tensor of the parent tensor tree. These appear as the e.g.
the lemmas `contr_tensor_eq` in what follows.
-/
open IndexNotation
open CategoryTheory
2024-10-09 16:57:41 +00:00
open MonoidalCategory
2024-10-08 07:52:55 +00:00
/-- The sturcture of a type of tensors e.g. Lorentz tensors, Einstien tensors,
complex Lorentz tensors. -/
structure TensorSpecies where
2024-10-08 07:52:55 +00:00
/-- The colors of indices e.g. up or down. -/
C : Type
2024-10-08 07:52:55 +00:00
/-- The symmetry group acting on these tensor e.g. the Lorentz group or SL(2,). -/
G : Type
2024-10-08 07:52:55 +00:00
/-- An instance of `G` as a group. -/
G_group : Group G
2024-10-08 07:52:55 +00:00
/-- The field over which we want to consider the tensors to live in, usually `` or ``. -/
k : Type
2024-10-08 07:52:55 +00:00
/-- An instance of `k` as a commutative ring. -/
k_commRing : CommRing k
2024-10-08 07:52:55 +00:00
/-- A `MonoidalFunctor` from `OverColor C` giving the rep corresponding to a map of colors
`X → C`. -/
2024-10-15 06:08:56 +00:00
FDiscrete : Discrete C ⥤ Rep k G
2024-10-08 07:52:55 +00:00
/-- A map from `C` to `C`. An involution. -/
τ : C → C
2024-10-21 09:44:56 +00:00
/-- The condition that `τ` is an involution. -/
2024-10-15 06:08:56 +00:00
τ_involution : Function.Involutive τ
/-- The natural transformation describing contraction. -/
2024-10-16 16:38:36 +00:00
contr : OverColor.Discrete.pairτ FDiscrete τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G)
2024-10-15 06:08:56 +00:00
/-- The natural transformation describing the metric. -/
2024-10-16 16:38:36 +00:00
metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FDiscrete
2024-10-15 06:08:56 +00:00
/-- The natural transformation describing the unit. -/
unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FDiscrete τ
2024-10-08 07:52:55 +00:00
/-- A specification of the dimension of each color in C. This will be used for explicit
evaluation of tensors. -/
2024-10-21 16:07:39 +00:00
repDim : C →
2024-10-22 06:42:06 +00:00
/-- repDim is not zero for any color. This allows casting of `` to `Fin (S.repDim c)`. -/
repDim_neZero (c : C) : NeZero (repDim c)
2024-10-21 16:07:39 +00:00
/-- A basis for each Module, determined by the evaluation map. -/
basis : (c : C) → Basis (Fin (repDim c)) k (FDiscrete.obj (Discrete.mk c)).V
2024-10-21 12:20:43 +00:00
/-- Contraction is symmetric with respect to duals. -/
contr_tmul_symm (c : C) (x : FDiscrete.obj (Discrete.mk c))
(y : FDiscrete.obj (Discrete.mk (τ c))) :
(contr.app (Discrete.mk c)).hom (x ⊗ₜ[k] y) = (contr.app (Discrete.mk (τ c))).hom
(y ⊗ₜ (FDiscrete.map (Discrete.eqToHom (τ_involution c).symm)).hom x)
/-- Contraction with unit leaves invariant. -/
contr_unit (c : C) (x : FDiscrete.obj (Discrete.mk (c))) :
(λ_ (FDiscrete.obj (Discrete.mk (c)))).hom.hom
(((contr.app (Discrete.mk c)) ▷ (FDiscrete.obj (Discrete.mk (c)))).hom
((α_ _ _ (FDiscrete.obj (Discrete.mk (c)))).inv.hom
(x ⊗ₜ[k] (unit.app (Discrete.mk c)).hom (1 : k)))) = x
/-- The unit is symmetric. -/
unit_symm (c : C) :
((unit.app (Discrete.mk c)).hom (1 : k)) =
2024-10-24 15:04:37 +00:00
((FDiscrete.obj (Discrete.mk (τ (c)))) ◁
(FDiscrete.map (Discrete.eqToHom (τ_involution c)))).hom
((β_ (FDiscrete.obj (Discrete.mk (τ (τ c)))) (FDiscrete.obj (Discrete.mk (τ (c))))).hom.hom
((unit.app (Discrete.mk (τ c))).hom (1 : k)))
/-- On contracting metrics we get back the unit. -/
contr_metric (c : C) :
(β_ (FDiscrete.obj (Discrete.mk c)) (FDiscrete.obj (Discrete.mk (τ c)))).hom.hom
2024-10-24 15:04:37 +00:00
(((FDiscrete.obj (Discrete.mk c)) ◁ (λ_ (FDiscrete.obj (Discrete.mk (τ c)))).hom).hom
(((FDiscrete.obj (Discrete.mk c)) ◁ ((contr.app (Discrete.mk c)) ▷
(FDiscrete.obj (Discrete.mk (τ c))))).hom
(((FDiscrete.obj (Discrete.mk c)) ◁ (α_ (FDiscrete.obj (Discrete.mk (c)))
(FDiscrete.obj (Discrete.mk (τ c))) (FDiscrete.obj (Discrete.mk (τ c)))).inv).hom
((α_ (FDiscrete.obj (Discrete.mk (c))) (FDiscrete.obj (Discrete.mk (c)))
(FDiscrete.obj (Discrete.mk (τ c)) ⊗ FDiscrete.obj (Discrete.mk (τ c)))).hom.hom
2024-10-24 15:04:37 +00:00
((metric.app (Discrete.mk c)).hom (1 : k) ⊗ₜ[k]
(metric.app (Discrete.mk (τ c))).hom (1 : k))))))
= (unit.app (Discrete.mk c)).hom (1 : k)
2024-10-15 06:08:56 +00:00
noncomputable section
namespace TensorSpecies
2024-10-18 16:08:17 +00:00
open OverColor
variable (S : TensorSpecies)
instance : CommRing S.k := S.k_commRing
instance : Group S.G := S.G_group
2024-10-22 06:42:06 +00:00
instance (c : S.C) : NeZero (S.repDim c) := S.repDim_neZero c
2024-10-15 06:08:56 +00:00
/-- The lift of the functor `S.F` to a monoidal functor. -/
2024-10-21 08:02:29 +00:00
def F : BraidedFunctor (OverColor S.C) (Rep S.k S.G) := (OverColor.lift).obj S.FDiscrete
2024-10-15 06:08:56 +00:00
2024-10-31 09:35:59 +00:00
/- The definition of `F` as a lemma. -/
2024-10-18 16:08:17 +00:00
lemma F_def : F S = (OverColor.lift).obj S.FDiscrete := rfl
lemma perm_contr_cond {n : } {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ}
(h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
c (Fin.succAbove ((Hom.toEquiv σ).symm i) ((Hom.toEquiv (extractOne i σ)).symm j)) =
S.τ (c ((Hom.toEquiv σ).symm i)) := by
have h1 := Hom.toEquiv_comp_apply σ
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, Functor.const_obj_obj, mk_hom] at h1
2024-10-18 16:08:17 +00:00
rw [h1, h1]
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Equiv.apply_symm_apply]
2024-10-18 16:08:17 +00:00
rw [← h]
congr
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, HepLean.Fin.finExtractOnePerm, HepLean.Fin.finExtractOnPermHom,
HepLean.Fin.finExtractOne_symm_inr_apply, Equiv.symm_apply_apply, Equiv.coe_fn_symm_mk]
2024-10-18 16:08:17 +00:00
erw [Equiv.apply_symm_apply]
rw [HepLean.Fin.succsAbove_predAboveI]
erw [Equiv.apply_symm_apply]
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, ne_eq]
2024-10-18 16:08:17 +00:00
erw [Equiv.apply_eq_iff_eq]
exact (Fin.succAbove_ne i j).symm
2024-10-15 06:08:56 +00:00
/-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo`
2024-10-19 09:19:29 +00:00
under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FDiscrete`. -/
def contrFin1Fin1 {n : } (c : Fin n.succ.succ → S.C)
2024-10-15 06:08:56 +00:00
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
S.F.obj (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) ≅
(OverColor.Discrete.pairτ S.FDiscrete S.τ).obj { as := c i } := by
2024-10-19 09:47:23 +00:00
apply (S.F.mapIso
(OverColor.mkSum (((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)))).trans
2024-10-15 06:08:56 +00:00
apply (S.F.μIso _ _).symm.trans
apply tensorIso ?_ ?_
· symm
apply (OverColor.forgetLiftApp S.FDiscrete (c i)).symm.trans
apply S.F.mapIso
apply OverColor.mkIso
funext x
fin_cases x
rfl
· symm
apply (OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).symm.trans
apply S.F.mapIso
apply OverColor.mkIso
funext x
fin_cases x
simp [h]
lemma contrFin1Fin1_inv_tmul {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
(x : S.FDiscrete.obj { as := c i })
(y : S.FDiscrete.obj { as := S.τ (c i) }) :
(S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) =
PiTensorProduct.tprod S.k (fun k =>
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
(eqToHom (by simp [h]))).hom y) := by
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, contrFin1Fin1, Functor.comp_obj, Discrete.functor_obj_eq_as,
Function.comp_apply, Iso.trans_symm, Iso.symm_symm_eq, Iso.trans_inv, tensorIso_inv,
Iso.symm_inv, Functor.mapIso_hom, tensor_comp, MonoidalFunctor.μIso_hom, Category.assoc,
LaxMonoidalFunctor.μ_natural, Functor.mapIso_inv, Action.comp_hom,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, Functor.id_obj, mk_hom,
Fin.isValue]
change (S.F.map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
((S.F.map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
2024-10-19 09:47:23 +00:00
((S.F.μ (OverColor.mk fun _ => c i) (OverColor.mk fun _ => S.τ (c i))).hom
((((OverColor.forgetLiftApp S.FDiscrete (c i)).inv.hom x) ⊗ₜ[S.k]
((OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).inv.hom y))))) = _
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
forgetLiftApp, Action.mkIso_inv_hom, LinearEquiv.toModuleIso_inv, Fin.isValue]
2024-10-19 09:47:23 +00:00
erw [OverColor.forgetLiftAppV_symm_apply,
OverColor.forgetLiftAppV_symm_apply S.FDiscrete (S.τ (c i))]
change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
(((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
2024-10-19 09:47:23 +00:00
(((OverColor.lift.obj S.FDiscrete).μ (OverColor.mk fun _ => c i)
(OverColor.mk fun _ => S.τ (c i))).hom
(((PiTensorProduct.tprod S.k) fun _ => x) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun _ => y))) = _
rw [OverColor.lift.obj_μ_tprod_tmul S.FDiscrete]
2024-10-19 09:47:23 +00:00
change ((OverColor.lift.obj S.FDiscrete).map
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
(((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
2024-10-19 09:47:23 +00:00
((PiTensorProduct.tprod S.k) _)) = _
rw [OverColor.lift.map_tprod S.FDiscrete]
2024-10-19 09:47:23 +00:00
change ((OverColor.lift.obj S.FDiscrete).map
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
((PiTensorProduct.tprod S.k _)) = _
rw [OverColor.lift.map_tprod S.FDiscrete]
apply congrArg
funext r
match r with
| Sum.inl 0 =>
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, lift.discreteSumEquiv, Sum.elim_inl,
Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor]
simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
rfl
| Sum.inr 0 =>
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
instMonoidalCategoryStruct_tensorObj_hom, lift.discreteFunctorMapEqIso, eqToIso_refl,
Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.mapIso_hom,
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, lift.discreteSumEquiv,
Sum.elim_inl, Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor,
LinearEquiv.ofLinear_apply]
rfl
2024-10-18 16:08:17 +00:00
lemma contrFin1Fin1_hom_hom_tprod {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
2024-10-19 09:47:23 +00:00
(x : (k : Fin 1 ⊕ Fin 1) → (S.FDiscrete.obj
{ as := (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).hom k })) :
2024-10-18 16:08:17 +00:00
(S.contrFin1Fin1 c i j h).hom.hom (PiTensorProduct.tprod S.k x) =
x (Sum.inl 0) ⊗ₜ[S.k] ((S.FDiscrete.map (eqToHom (by simp [h]))).hom (x (Sum.inr 0))) := by
change ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).hom _ = _
2024-10-19 09:47:23 +00:00
trans ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).toLinearEquiv
(PiTensorProduct.tprod S.k x)
2024-10-19 10:57:09 +00:00
· rfl
2024-10-18 16:08:17 +00:00
erw [← LinearEquiv.eq_symm_apply]
erw [contrFin1Fin1_inv_tmul]
congr
funext i
match i with
| Sum.inl 0 =>
2024-10-19 10:57:09 +00:00
rfl
2024-10-18 16:08:17 +00:00
| Sum.inr 0 =>
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, Fin.isValue, mk_hom, Function.comp_apply,
Discrete.functor_obj_eq_as]
2024-10-18 16:08:17 +00:00
change _ = ((S.FDiscrete.map (eqToHom _)) ≫ (S.FDiscrete.map (eqToHom _))).hom (x (Sum.inr 0))
rw [← Functor.map_comp]
simp
exact h
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and
a `j` in `Fin n.succ` allowing us to undertake contraction. -/
def contrIso {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FDiscrete S.τ).obj
(Discrete.mk (c i))) ⊗
(OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <|
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <|
(S.F.μIso _ _).symm.trans <| by
refine tensorIso (S.contrFin1Fin1 c i j h) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
2024-10-18 16:08:17 +00:00
lemma contrIso_hom_hom {n : } {c1 : Fin n.succ.succ → S.C}
2024-10-19 09:19:29 +00:00
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} :
(S.contrIso c1 i j h).hom.hom =
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ≫
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ≫
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗
(S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom) := by
2024-10-19 10:57:09 +00:00
rfl
2024-10-18 16:08:17 +00:00
/-- `contrMap` is a function that takes a natural number `n`, a function `c` from
2024-10-16 16:38:36 +00:00
`Fin n.succ.succ` to `S.C`, an index `i` of type `Fin n.succ.succ`, an index `j` of type
`Fin n.succ`, and a proof `h` that `c (i.succAbove j) = S.τ (c i)`. It returns a morphism
corresponding to the contraction of the `i`th index with the `i.succAbove j` index.
--/
def contrMap {n : } (c : Fin n.succ.succ → S.C)
2024-10-15 06:08:56 +00:00
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
S.F.obj (OverColor.mk c) ⟶
2024-10-19 08:33:49 +00:00
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
2024-10-15 06:08:56 +00:00
(S.contrIso c i j h).hom ≫
(tensorHom (S.contr.app (Discrete.mk (c i))) (𝟙 _)) ≫
(MonoidalCategory.leftUnitor _).hom
2024-10-19 10:07:03 +00:00
/-- Casts an element of the monoidal unit of `Rep S.k S.G` to the field `S.k`. -/
2024-10-19 09:19:29 +00:00
def castToField (v : (↑((𝟙_ (Discrete S.C ⥤ Rep S.k S.G)).obj { as := c }).V)) : S.k := v
2024-10-18 16:08:17 +00:00
2024-10-22 10:47:37 +00:00
/-- Casts an element of `(S.F.obj (OverColor.mk c)).V` for `c` a map from `Fin 0` to an
element of the field. -/
2024-10-22 10:33:28 +00:00
def castFin0ToField {c : Fin 0 → S.C} : (S.F.obj (OverColor.mk c)).V →ₗ[S.k] S.k :=
(PiTensorProduct.isEmptyEquiv (Fin 0)).toLinearMap
2024-10-22 10:47:37 +00:00
lemma castFin0ToField_tprod {c : Fin 0 → S.C}
(x : (i : Fin 0) → S.FDiscrete.obj (Discrete.mk (c i))) :
2024-10-22 10:33:28 +00:00
castFin0ToField S (PiTensorProduct.tprod S.k x) = 1 := by
2024-10-22 10:47:37 +00:00
simp only [castFin0ToField, mk_hom, Functor.id_obj, LinearEquiv.coe_coe]
2024-10-22 10:33:28 +00:00
erw [PiTensorProduct.isEmptyEquiv_apply_tprod]
2024-10-18 16:08:17 +00:00
lemma contrMap_tprod {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
(x : (i : Fin n.succ.succ) → S.FDiscrete.obj (Discrete.mk (c i))) :
2024-10-19 09:19:29 +00:00
(S.contrMap c i j h).hom (PiTensorProduct.tprod S.k x) =
2024-10-18 16:08:17 +00:00
(S.castToField ((S.contr.app (Discrete.mk (c i))).hom ((x i) ⊗ₜ[S.k]
2024-10-19 09:19:29 +00:00
(S.FDiscrete.map (Discrete.eqToHom h)).hom (x (i.succAbove j)))) : S.k)
2024-10-19 09:47:23 +00:00
• (PiTensorProduct.tprod S.k (fun k => x (i.succAbove (j.succAbove k))) :
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))) := by
2024-10-18 16:08:17 +00:00
rw [contrMap, contrIso]
simp only [Nat.succ_eq_add_one, S.F_def, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom,
tensorIso_hom, Monoidal.tensorUnit_obj, tensorHom_id,
Category.assoc, Action.comp_hom, Action.instMonoidalCategory_tensorObj_V,
Action.instMonoidalCategory_tensorHom_hom, Action.instMonoidalCategory_tensorUnit_V,
Action.instMonoidalCategory_whiskerRight_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
Function.comp_apply, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as]
change (λ_ ((lift.obj S.FDiscrete).obj _)).hom.hom
2024-10-19 09:47:23 +00:00
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
(((lift.obj S.FDiscrete).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)
∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
(((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
(((lift.obj S.FDiscrete).map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom
((PiTensorProduct.tprod S.k) x)))))) = _
2024-10-18 16:08:17 +00:00
rw [lift.map_tprod]
change (λ_ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
2024-10-19 09:47:23 +00:00
(((S.contr.app { as := c i }).hom ▷
((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
(((lift.obj S.FDiscrete).μIso (OverColor.mk
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
(((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
((PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FDiscrete _)
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm i_1))))))) = _
2024-10-18 16:08:17 +00:00
rw [lift.map_tprod]
change (λ_ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
2024-10-19 09:47:23 +00:00
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
(((lift.obj S.FDiscrete).μIso
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
((PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FDiscrete _)
((lift.discreteFunctorMapEqIso S.FDiscrete _)
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm i_1)))))))) = _
2024-10-18 16:08:17 +00:00
rw [lift.μIso_inv_tprod]
change (λ_ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
2024-10-19 09:47:23 +00:00
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
((TensorProduct.map (S.contrFin1Fin1 c i j h).hom.hom
((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
(((PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FDiscrete _)
((lift.discreteFunctorMapEqIso S.FDiscrete _) (x
((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm
(Sum.inl i_1)))))) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FDiscrete _) ((lift.discreteFunctorMapEqIso S.FDiscrete _)
2024-10-19 09:19:29 +00:00
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
((Hom.toEquiv
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm (Sum.inr i_1)))))))) = _
2024-10-18 16:08:17 +00:00
rw [TensorProduct.map_tmul]
rw [contrFin1Fin1_hom_hom_tprod]
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V,
Action.instMonoidalCategory_tensorUnit_V, Fin.isValue, mk_hom, Function.comp_apply,
Discrete.functor_obj_eq_as, instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv,
Equiv.refl_symm, Functor.id_obj, ModuleCat.MonoidalCategory.whiskerRight_apply]
rw [Action.instMonoidalCategory_leftUnitor_hom_hom]
2024-10-19 09:19:29 +00:00
simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue,
ModuleCat.MonoidalCategory.leftUnitor_hom_apply]
2024-10-18 16:08:17 +00:00
congr 1
/- The contraction. -/
2024-10-19 09:19:29 +00:00
· simp only [Fin.isValue, castToField]
2024-10-18 16:08:17 +00:00
congr 2
2024-10-19 09:19:29 +00:00
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
2024-10-18 16:08:17 +00:00
rfl
2024-10-19 09:47:23 +00:00
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
2024-10-18 16:08:17 +00:00
change (S.FDiscrete.map (eqToHom _)).hom
(x (((HepLean.Fin.finExtractTwo i j)).symm ((Sum.inl (Sum.inr 0))))) = _
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, Fin.isValue]
2024-10-18 16:08:17 +00:00
have h1' {a b d: Fin n.succ.succ} (hbd : b =d) (h : c d = S.τ (c a)) (h' : c b = S.τ (c a)) :
2024-10-19 09:19:29 +00:00
(S.FDiscrete.map (Discrete.eqToHom (h))).hom (x d) =
(S.FDiscrete.map (Discrete.eqToHom h')).hom (x b) := by
2024-10-18 16:08:17 +00:00
subst hbd
rfl
refine h1' ?_ ?_ ?_
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, Fin.isValue, HepLean.Fin.finExtractTwo_symm_inl_inr_apply]
2024-10-18 16:08:17 +00:00
simp [h]
/- The tensor. -/
· erw [lift.map_tprod]
apply congrArg
funext d
2024-10-19 09:19:29 +00:00
simp only [mk_hom, Function.comp_apply, lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom,
Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
2024-10-18 16:08:17 +00:00
change (S.FDiscrete.map (eqToHom _)).hom
2024-10-19 09:19:29 +00:00
((x ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr (d))))) = _
simp only [Nat.succ_eq_add_one]
2024-10-19 09:47:23 +00:00
have h1 : ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr d))
= (i.succAbove (j.succAbove d)) := HepLean.Fin.finExtractTwo_symm_inr_apply i j d
2024-10-18 16:08:17 +00:00
have h1' {a b : Fin n.succ.succ} (h : a = b) :
(S.FDiscrete.map (eqToHom (by rw [h]))).hom (x a) = x b := by
subst h
simp
exact h1' h1
2024-10-21 16:07:39 +00:00
/-!
## Evalutation of indices.
-/
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ`
2024-10-21 16:24:16 +00:00
allowing us to undertake evaluation. -/
2024-10-21 16:07:39 +00:00
def evalIso {n : } (c : Fin n.succ → S.C)
(i : Fin n.succ) : S.F.obj (OverColor.mk c) ≅ (S.FDiscrete.obj (Discrete.mk (c i))) ⊗
2024-10-21 16:24:16 +00:00
(OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove)) :=
2024-10-21 16:07:39 +00:00
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractOne i))).trans <|
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractOne i).symm))).trans <|
(S.F.μIso _ _).symm.trans <|
tensorIso
2024-10-22 10:47:37 +00:00
((S.F.mapIso (OverColor.mkIso (by ext x; fin_cases x; rfl))).trans
2024-10-21 16:07:39 +00:00
(OverColor.forgetLiftApp S.FDiscrete (c i))) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
lemma evalIso_tprod {n : } {c : Fin n.succ → S.C} (i : Fin n.succ)
(x : (i : Fin n.succ) → S.FDiscrete.obj (Discrete.mk (c i))) :
(S.evalIso c i).hom.hom (PiTensorProduct.tprod S.k x) =
2024-10-21 16:24:16 +00:00
x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k (fun k => x (i.succAbove k))) := by
2024-10-21 16:07:39 +00:00
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, F_def, evalIso,
Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Action.comp_hom,
Action.instMonoidalCategory_tensorHom_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
Function.comp_apply]
change (((lift.obj S.FDiscrete).map (mkIso _).hom).hom ≫
(forgetLiftApp S.FDiscrete (c i)).hom.hom ⊗
((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
(((lift.obj S.FDiscrete).μIso
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
(((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
(((lift.obj S.FDiscrete).map (equivToIso (HepLean.Fin.finExtractOne i)).hom).hom
((PiTensorProduct.tprod S.k) _)))) =_
rw [lift.map_tprod]
change (((lift.obj S.FDiscrete).map (mkIso _).hom).hom ≫
(forgetLiftApp S.FDiscrete (c i)).hom.hom ⊗
((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
(((lift.obj S.FDiscrete).μIso
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
(((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
(((PiTensorProduct.tprod S.k) _)))) =_
rw [lift.map_tprod]
change ((TensorProduct.map (((lift.obj S.FDiscrete).map (mkIso _).hom).hom ≫
(forgetLiftApp S.FDiscrete (c i)).hom.hom)
((lift.obj S.FDiscrete).map (mkIso _).hom).hom))
(((lift.obj S.FDiscrete).μIso
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
((((PiTensorProduct.tprod S.k) _)))) =_
rw [lift.μIso_inv_tprod]
rw [TensorProduct.map_tmul]
erw [lift.map_tprod]
simp only [Nat.succ_eq_add_one, CategoryStruct.comp, Functor.id_obj,
instMonoidalCategoryStruct_tensorObj_hom, mk_hom, Sum.elim_inl, Function.comp_apply,
instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv, Equiv.refl_symm,
LinearMap.coe_comp, Sum.elim_inr]
congr 1
· change (forgetLiftApp S.FDiscrete (c i)).hom.hom
(((lift.obj S.FDiscrete).map (mkIso _).hom).hom
((PiTensorProduct.tprod S.k) _)) = _
rw [lift.map_tprod]
rw [forgetLiftApp_hom_hom_apply_eq]
apply congrArg
funext i
match i with
| (0 : Fin 1) =>
simp only [mk_hom, Fin.isValue, Function.comp_apply, lift.discreteFunctorMapEqIso,
eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
LinearEquiv.ofLinear_apply]
rfl
· apply congrArg
funext k
2024-10-22 10:47:37 +00:00
simp only [lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv,
eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
LinearEquiv.ofLinear_apply]
2024-10-21 16:07:39 +00:00
change (S.FDiscrete.map (eqToHom _)).hom
(x ((HepLean.Fin.finExtractOne i).symm ((Sum.inr k)))) = _
have h1' {a b : Fin n.succ} (h : a = b) :
(S.FDiscrete.map (eqToHom (by rw [h]))).hom (x a) = x b := by
subst h
simp
refine h1' ?_
exact HepLean.Fin.finExtractOne_symm_inr_apply i k
/-- The linear map giving the coordinate of a vector with respect to the given basis.
Important Note: This is not a morphism in the category of representations. In general,
it cannot be lifted thereto. -/
def evalLinearMap {n : } {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) :
S.FDiscrete.obj { as := c i } →ₗ[S.k] S.k where
toFun := fun v => (S.basis (c i)).repr v e
map_add' := by simp
map_smul' := by simp
/-- The evaluation map, used to evaluate indices of tensors.
Important Note: The evaluation map is in general, not equivariant with respect to
group actions. It is a morphism in the underlying module category, not the category
of representations. -/
def evalMap {n : } {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) :
(S.F.obj (OverColor.mk c)).V ⟶ (S.F.obj (OverColor.mk (c ∘ i.succAbove))).V :=
2024-10-21 16:24:16 +00:00
(S.evalIso c i).hom.hom ≫ ((Action.forgetMonoidal _ _).μIso _ _).inv
2024-10-21 16:07:39 +00:00
≫ ModuleCat.asHom (TensorProduct.map (S.evalLinearMap i e) LinearMap.id) ≫
ModuleCat.asHom (TensorProduct.lid S.k _).toLinearMap
lemma evalMap_tprod {n : } {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i)))
(x : (i : Fin n.succ) → S.FDiscrete.obj (Discrete.mk (c i))) :
(S.evalMap i e) (PiTensorProduct.tprod S.k x) =
(((S.basis (c i)).repr (x i) e) : S.k) •
(PiTensorProduct.tprod S.k
(fun k => x (i.succAbove k)) : S.F.obj (OverColor.mk (c ∘ i.succAbove))) := by
rw [evalMap]
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V,
Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor, Action.forget_obj, Functor.id_obj, mk_hom,
Function.comp_apply, ModuleCat.coe_comp]
erw [evalIso_tprod]
change ((TensorProduct.lid S.k ↑((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove))).V))
2024-10-21 16:24:16 +00:00
(((TensorProduct.map (S.evalLinearMap i e) LinearMap.id))
(((Action.forgetMonoidal (ModuleCat S.k) (MonCat.of S.G)).μIso (S.FDiscrete.obj { as := c i })
((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove)))).inv
(x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun k => x (i.succAbove k)))) = _
2024-10-21 16:07:39 +00:00
simp only [Nat.succ_eq_add_one, Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor,
Action.forget_obj, Action.instMonoidalCategory_tensorObj_V, MonoidalFunctor.μIso,
Action.forgetMonoidal_toLaxMonoidalFunctor_μ, asIso_inv, IsIso.inv_id, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
Functor.id_obj, mk_hom, Function.comp_apply, ModuleCat.id_apply, TensorProduct.map_tmul,
LinearMap.id_coe, id_eq, TensorProduct.lid_tmul]
rfl
end TensorSpecies
2024-10-08 07:52:55 +00:00
/-- A syntax tree for tensor expressions. -/
inductive TensorTree (S : TensorSpecies) : {n : } → (Fin n → S.C) → Type where
2024-10-16 16:38:36 +00:00
/-- A general tensor node. -/
2024-10-08 07:52:55 +00:00
| tensorNode {n : } {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) : TensorTree S c
2024-10-16 16:38:36 +00:00
/-- A node corresponding to the addition of two tensors. -/
| add {n : } {c : Fin n → S.C} : TensorTree S c → TensorTree S c → TensorTree S c
2024-10-16 16:38:36 +00:00
/-- A node corresponding to the permutation of indices of a tensor. -/
| perm {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) : TensorTree S c1
/-- A node corresponding to the product of two tensors. -/
| prod {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
(t : TensorTree S c) (t1 : TensorTree S c1) : TensorTree S (Sum.elim c c1 ∘ finSumFinEquiv.symm)
/-- A node correpsonding to the scalar multiple of a tensor by a element of the field. -/
| smul {n : } {c : Fin n → S.C} : S.k → TensorTree S c → TensorTree S c
/-- A node corresponding to negation of a tensor. -/
| neg {n : } {c : Fin n → S.C} : TensorTree S c → TensorTree S c
/-- A node corresponding to the contraction of indices of a tensor. -/
2024-10-16 16:38:36 +00:00
| contr {n : } {c : Fin n.succ.succ → S.C} : (i : Fin n.succ.succ) →
(j : Fin n.succ) → (h : c (i.succAbove j) = S.τ (c i)) → TensorTree S c →
TensorTree S (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
/-- A node correpsonding to the action of a group element on a tensor. -/
2024-10-29 12:32:33 +00:00
| action {n : } {c : Fin n → S.C} : S.G → TensorTree S c → TensorTree S c
/-- A node corresponding to the evaluation of an index of a tensor. -/
| eval {n : } {c : Fin n.succ → S.C} : (i : Fin n.succ) → (x : ) → TensorTree S c →
2024-10-08 07:52:55 +00:00
TensorTree S (c ∘ Fin.succAbove i)
namespace TensorTree
variable {S : TensorSpecies} {n : } {c : Fin n → S.C} (T : TensorTree S c)
open MonoidalCategory
open TensorProduct
2024-10-22 07:11:44 +00:00
/-!
## Composite nodes
-/
/-- A node consisting of a single vector. -/
def vecNode {c : S.C} (v : S.FDiscrete.obj (Discrete.mk c)) : TensorTree S ![c] :=
perm (OverColor.mkIso (by
ext x; fin_cases x; rfl)).hom
(tensorNode ((OverColor.forgetLiftApp S.FDiscrete c).symm.hom.hom v))
2024-10-22 06:42:06 +00:00
/-- The node `vecNode` of a tensor tree, with all arguments explicit. -/
abbrev vecNodeE (S : TensorSpecies) (c1 : S.C)
(v : (S.FDiscrete.obj (Discrete.mk c1)).V) :
TensorTree S ![c1] := vecNode v
2024-10-22 07:11:44 +00:00
/-- A node consisting of a two tensor. -/
def twoNode {c1 c2 : S.C} (t : (S.FDiscrete.obj (Discrete.mk c1) ⊗
S.FDiscrete.obj (Discrete.mk c2)).V) :
TensorTree S ![c1, c2] :=
(tensorNode ((OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom t))
2024-10-16 16:38:36 +00:00
/-- The node `twoNode` of a tensor tree, with all arguments explicit. -/
abbrev twoNodeE (S : TensorSpecies) (c1 c2 : S.C)
(v : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)).V) :
2024-10-16 16:38:36 +00:00
TensorTree S ![c1, c2] := twoNode v
2024-10-22 14:19:43 +00:00
/-- A node consisting of a three tensor. -/
def threeNode {c1 c2 c3 : S.C} (t : (S.FDiscrete.obj (Discrete.mk c1) ⊗
S.FDiscrete.obj (Discrete.mk c2) ⊗ S.FDiscrete.obj (Discrete.mk c3)).V) :
TensorTree S ![c1, c2, c3] :=
(tensorNode ((OverColor.Discrete.tripleIsoSep S.FDiscrete).hom.hom t))
/-- The node `threeNode` of a tensor tree, with all arguments explicit. -/
abbrev threeNodeE (S : TensorSpecies) (c1 c2 c3 : S.C)
(v : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
S.FDiscrete.obj (Discrete.mk c3)).V) :
TensorTree S ![c1, c2, c3] := threeNode v
2024-10-22 07:11:44 +00:00
/-- A general constant node. -/
def constNode {n : } {c : Fin n → S.C} (T : 𝟙_ (Rep S.k S.G) ⟶ S.F.obj (OverColor.mk c)) :
TensorTree S c := tensorNode (T.hom (1 : S.k))
/-- A constant vector. -/
def constVecNode {c : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c)) :
TensorTree S ![c] := vecNode (v.hom (1 : S.k))
2024-10-22 14:19:43 +00:00
/-- A constant two tensor (e.g. metric and unit). -/
2024-10-22 07:11:44 +00:00
def constTwoNode {c1 c2 : S.C}
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) :
TensorTree S ![c1, c2] := twoNode (v.hom (1 : S.k))
2024-10-22 14:19:43 +00:00
/-- The node `constTwoNode` of a tensor tree, with all arguments explicit. -/
abbrev constTwoNodeE (S : TensorSpecies) (c1 c2 : S.C)
2024-10-16 16:42:20 +00:00
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) :
2024-10-16 16:38:36 +00:00
TensorTree S ![c1, c2] := constTwoNode v
2024-10-22 14:19:43 +00:00
/-- A constant three tensor (e.g. Pauli matrices). -/
def constThreeNode {c1 c2 c3 : S.C}
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] :=
threeNode (v.hom (1 : S.k))
/-- The node `constThreeNode` of a tensor tree, with all arguments explicit. -/
abbrev constThreeNodeE (S : TensorSpecies) (c1 c2 c3 : S.C)
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] :=
constThreeNode v
2024-10-22 07:11:44 +00:00
/-!
## Other operations.
2024-10-16 16:38:36 +00:00
2024-10-22 07:11:44 +00:00
-/
2024-10-08 07:52:55 +00:00
/-- The number of nodes in a tensor tree. -/
def size : ∀ {n : } {c : Fin n → S.C}, TensorTree S c → := fun
| tensorNode _ => 1
| add t1 t2 => t1.size + t2.size + 1
| perm _ t => t.size + 1
| neg t => t.size + 1
| smul _ t => t.size + 1
| prod t1 t2 => t1.size + t2.size + 1
2024-10-16 16:38:36 +00:00
| contr _ _ _ t => t.size + 1
2024-10-08 07:26:23 +00:00
| eval _ _ t => t.size + 1
2024-10-29 12:32:33 +00:00
| action _ t => t.size + 1
noncomputable section
2024-10-31 14:13:35 +00:00
/-- The underlying tensor a tensor tree corresponds to. -/
2024-10-08 07:52:55 +00:00
def tensor : ∀ {n : } {c : Fin n → S.C}, TensorTree S c → S.F.obj (OverColor.mk c) := fun
| tensorNode t => t
| add t1 t2 => t1.tensor + t2.tensor
| perm σ t => (S.F.map σ).hom t.tensor
| neg t => - t.tensor
| smul a t => a • t.tensor
| prod t1 t2 => (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom
((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor))
2024-10-16 16:42:20 +00:00
| contr i j h t => (S.contrMap _ i j h).hom t.tensor
2024-10-22 06:42:06 +00:00
| eval i e t => (S.evalMap i (Fin.ofNat' e Fin.size_pos')) t.tensor
2024-10-29 12:32:33 +00:00
| action g t => (S.F.obj (OverColor.mk _)).ρ g t.tensor
2024-10-22 10:47:37 +00:00
/-- Takes a tensor tree based on `Fin 0`, into the field `S.k`. -/
2024-10-22 10:33:28 +00:00
def field {c : Fin 0 → S.C} (t : TensorTree S c) : S.k := S.castFin0ToField t.tensor
/-!
## Tensor on different nodes.
-/
@[simp]
2024-10-19 15:26:57 +00:00
lemma tensorNode_tensor {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) :
(tensorNode T).tensor = T := rfl
@[simp]
lemma constTwoNode_tensor {c1 c2 : S.C}
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) :
2024-10-19 09:47:23 +00:00
(constTwoNode v).tensor =
(OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom (v.hom (1 : S.k)) :=
rfl
@[simp]
lemma constThreeNode_tensor {c1 c2 c3 : S.C}
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
S.FDiscrete.obj (Discrete.mk c3)) :
(constThreeNode v).tensor =
(OverColor.Discrete.tripleIsoSep S.FDiscrete).hom.hom (v.hom (1 : S.k)) :=
rfl
2024-10-19 09:47:23 +00:00
lemma prod_tensor {c1 : Fin n → S.C} {c2 : Fin m → S.C} (t1 : TensorTree S c1)
(t2 : TensorTree S c2) :
(prod t1 t2).tensor = (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom
2024-10-19 09:19:29 +00:00
((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor)) := rfl
lemma add_tensor (t1 t2 : TensorTree S c) : (add t1 t2).tensor = t1.tensor + t2.tensor := rfl
lemma perm_tensor (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) :
(perm σ t).tensor = (S.F.map σ).hom t.tensor := rfl
2024-10-19 09:47:23 +00:00
lemma contr_tensor {n : } {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ}
{h : c (i.succAbove j) = S.τ (c i)} (t : TensorTree S c) :
(contr i j h t).tensor = (S.contrMap c i j h).hom t.tensor := rfl
lemma neg_tensor (t : TensorTree S c) : (neg t).tensor = - t.tensor := rfl
2024-10-22 10:47:37 +00:00
lemma eval_tensor {n : } {c : Fin n.succ → S.C} (i : Fin n.succ) (e : ) (t : TensorTree S c) :
(eval i e t).tensor = (S.evalMap i (Fin.ofNat' e Fin.size_pos')) t.tensor := rfl
2024-10-21 16:07:39 +00:00
2024-10-23 15:19:41 +00:00
lemma smul_tensor {c : Fin n → S.C} (a : S.k) (T : TensorTree S c) :
2024-10-24 06:10:08 +00:00
(smul a T).tensor = a • T.tensor:= rfl
2024-10-29 12:32:33 +00:00
lemma action_tensor {c : Fin n → S.C} (g : S.G) (T : TensorTree S c) :
(action g T).tensor = (S.F.obj (OverColor.mk c)).ρ g T.tensor := rfl
/-!
## Equality of tensors and rewrites.
-/
lemma contr_tensor_eq {n : } {c : Fin n.succ.succ → S.C} {T1 T2 : TensorTree S c}
(h : T1.tensor = T2.tensor) {i : Fin n.succ.succ} {j : Fin n.succ}
{h' : c (i.succAbove j) = S.τ (c i)} :
(contr i j h' T1).tensor = (contr i j h' T2).tensor := by
simp only [Nat.succ_eq_add_one, contr_tensor]
rw [h]
lemma prod_tensor_eq_fst {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
2024-10-19 09:19:29 +00:00
{T1 T1' : TensorTree S c} { T2 : TensorTree S c1}
(h : T1.tensor = T1'.tensor) :
(prod T1 T2).tensor = (prod T1' T2).tensor := by
2024-10-19 09:19:29 +00:00
simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj]
rw [h]
lemma prod_tensor_eq_snd {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
{T1 : TensorTree S c} {T2 T2' : TensorTree S c1}
(h : T2.tensor = T2'.tensor) :
(prod T1 T2).tensor = (prod T1 T2').tensor := by
2024-10-19 09:19:29 +00:00
simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj]
rw [h]
lemma perm_tensor_eq {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
{σ : (OverColor.mk c) ⟶ (OverColor.mk c1)} {T1 T2 : TensorTree S c}
(h : T1.tensor = T2.tensor) :
(perm σ T1).tensor = (perm σ T2).tensor := by
simp only [perm_tensor]
rw [h]
lemma add_tensor_eq_fst {T1 T1' T2 : TensorTree S c} (h : T1.tensor = T1'.tensor) :
(add T1 T2).tensor = (add T1' T2).tensor := by
simp only [add_tensor]
rw [h]
lemma add_tensor_eq_snd {T1 T2 T2' : TensorTree S c} (h : T2.tensor = T2'.tensor) :
(add T1 T2).tensor = (add T1 T2').tensor := by
simp only [add_tensor]
rw [h]
lemma add_tensor_eq {T1 T1' T2 T2' : TensorTree S c} (h1 : T1.tensor = T1'.tensor)
(h2 : T2.tensor = T2'.tensor) :
(add T1 T2).tensor = (add T1' T2').tensor := by
simp only [add_tensor]
rw [h1, h2]
lemma neg_tensor_eq {T1 T2 : TensorTree S c} (h : T1.tensor = T2.tensor) :
(neg T1).tensor = (neg T2).tensor := by
simp only [neg_tensor]
rw [h]
2024-10-23 15:19:41 +00:00
lemma smul_tensor_eq {T1 T2 : TensorTree S c} {a : S.k} (h : T1.tensor = T2.tensor) :
(smul a T1).tensor = (smul a T2).tensor := by
simp only [smul_tensor]
rw [h]
2024-10-29 12:32:33 +00:00
lemma action_tensor_eq {T1 T2 : TensorTree S c} {g : S.G} (h : T1.tensor = T2.tensor) :
(action g T1).tensor = (action g T2).tensor := by
simp only [action_tensor]
rw [h]
lemma smul_mul_eq {T1 : TensorTree S c} {a b : S.k} (h : a = b) :
(smul a T1).tensor = (smul b T1).tensor := by
rw [h]
2024-10-23 19:43:58 +00:00
lemma eq_tensorNode_of_eq_tensor {T1 : TensorTree S c} {t : S.F.obj (OverColor.mk c)}
(h : T1.tensor = t) : T1.tensor = (tensorNode t).tensor := by
simpa using h
/-!
## The zero tensor tree
-/
/-- The zero tensor tree. -/
def zeroTree {n : } {c : Fin n → S.C} : TensorTree S c := tensorNode 0
@[simp]
lemma zeroTree_tensor {n : } {c : Fin n → S.C} : (zeroTree (c := c)).tensor = 0 := by
rfl
2024-10-25 13:54:58 +00:00
lemma zero_smul {T1 : TensorTree S c} :
(smul 0 T1).tensor = zeroTree.tensor := by
simp only [smul_tensor, _root_.zero_smul, zeroTree_tensor]
2024-10-25 13:54:58 +00:00
lemma smul_zero {a : S.k} : (smul a (zeroTree (c := c))).tensor = zeroTree.tensor := by
simp only [smul_tensor, zeroTree_tensor, _root_.smul_zero]
lemma zero_add {T1 : TensorTree S c} : (add zeroTree T1).tensor = T1.tensor := by
simp only [add_tensor, zeroTree_tensor, _root_.zero_add]
lemma add_zero {T1 : TensorTree S c} : (add T1 zeroTree).tensor = T1.tensor := by
simp only [add_tensor, zeroTree_tensor, _root_.add_zero]
lemma perm_zero {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C} (σ : (OverColor.mk c) ⟶
(OverColor.mk c1)) : (perm σ zeroTree).tensor = zeroTree.tensor := by
simp only [perm_tensor, zeroTree_tensor, map_zero]
2024-10-25 13:54:58 +00:00
lemma neg_zero : (neg (zeroTree (c := c))).tensor = zeroTree.tensor := by
simp only [neg_tensor, zeroTree_tensor, _root_.neg_zero]
2024-10-25 13:54:58 +00:00
lemma contr_zero {n : } {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ}
{h : c (i.succAbove j) = S.τ (c i)} : (contr i j h zeroTree).tensor = zeroTree.tensor := by
simp only [contr_tensor, zeroTree_tensor, map_zero]
lemma zero_prod {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C} (t : TensorTree S c1) :
(prod (zeroTree (c := c)) t).tensor = zeroTree.tensor := by
simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, zeroTree_tensor, zero_tmul, map_zero]
lemma prod_zero {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C} (t : TensorTree S c) :
(prod t (zeroTree (c := c1))).tensor = zeroTree.tensor := by
simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, zeroTree_tensor, tmul_zero, map_zero]
2024-10-21 12:34:42 +00:00
/-- A structure containing a pair of indices (i, j) to be contracted in a tensor.
This is used in some proofs of node identities for tensor trees. -/
structure ContrPair {n : } (c : Fin n.succ.succ → S.C) where
/-- The first index in the pair, appearing on the left in the contraction
node `contr i j h _`. -/
i : Fin n.succ.succ
/-- The second index in the pair, appearing on the right in the contraction
node `contr i j h _`. -/
j : Fin n.succ
/-- A proof that the two indices can be contracted. -/
h : c (i.succAbove j) = S.τ (c i)
2024-10-21 13:40:23 +00:00
namespace ContrPair
2024-10-27 17:07:45 +00:00
variable {n : } {c : Fin n.succ.succ → S.C} (q q' : ContrPair c)
2024-10-21 13:40:23 +00:00
lemma ext (hi : q.i = q'.i) (hj : q.j = q'.j) : q = q' := by
cases q
cases q'
subst hi
subst hj
rfl
/-- The contraction map for a pair of indices. -/
def contrMap := S.contrMap c q.i q.j q.h
end ContrPair
end
end TensorTree
2024-10-15 06:08:56 +00:00
end