PhysLean/HepLean/SpaceTime/LorentzTensor/IndexNotation/Indices/UniqueDual.lean

440 lines
13 KiB
Text
Raw Normal View History

2024-08-12 14:14:45 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.IndexNotation.Indices.Dual
import HepLean.SpaceTime.LorentzTensor.Basic
/-!
# Unique Dual indices
-/
namespace IndexNotation
namespace IndexList
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
variable (l l2 : IndexList X)
/-!
## Has single dual in self.
-/
def withUniqueDual : Finset (Fin l.length) :=
Finset.filter (fun i => i ∈ l.withDual ∧
∀ j, l.AreDualInSelf i j → j = l.getDual? i) Finset.univ
2024-08-13 16:36:42 -04:00
@[simp]
lemma mem_withDual_of_mem_withUniqueDual (i : Fin l.length) (h : i ∈ l.withUniqueDual) :
i ∈ l.withDual := by
simp only [withUniqueDual, mem_withDual_iff_isSome, Finset.mem_filter, Finset.mem_univ,
true_and] at h
simpa using h.1
@[simp]
lemma mem_withUniqueDual_isSome (i : Fin l.length) (h : i ∈ l.withUniqueDual) :
(l.getDual? i).isSome := by
simpa using mem_withDual_of_mem_withUniqueDual l i h
2024-08-12 14:14:45 -04:00
lemma mem_withDual_of_withUniqueDual (i : l.withUniqueDual) :
i.1 ∈ l.withDual := by
have hi := i.2
2024-08-13 16:36:42 -04:00
simp only [withUniqueDual, Finset.mem_filter, Finset.mem_univ] at hi
exact hi.2.1
2024-08-12 14:14:45 -04:00
def fromWithUnique (i : l.withUniqueDual) : l.withDual :=
⟨i.1, l.mem_withDual_of_withUniqueDual i⟩
instance : Coe l.withUniqueDual l.withDual where
coe i := ⟨i.1, l.mem_withDual_of_withUniqueDual i⟩
@[simp]
lemma fromWithUnique_coe (i : l.withUniqueDual) : (l.fromWithUnique i).1 = i.1 := by
rfl
lemma all_dual_eq_getDual_of_withUniqueDual (i : l.withUniqueDual) :
∀ j, l.AreDualInSelf i j → j = l.getDual! i := by
have hi := i.2
simp [withUniqueDual] at hi
intro j hj
simpa [getDual!, fromWithUnique] using (Option.get_of_mem _ (hi.2 j hj ).symm).symm
lemma eq_of_areDualInSelf_withUniqueDual {j k : Fin l.length} (i : l.withUniqueDual)
(hj : l.AreDualInSelf i j) (hk : l.AreDualInSelf i k) :
j = k := by
have hj' := all_dual_eq_getDual_of_withUniqueDual l i j hj
have hk' := all_dual_eq_getDual_of_withUniqueDual l i k hk
rw [hj', hk']
2024-08-13 16:36:42 -04:00
/-!
## Properties of getDual?
-/
lemma all_dual_eq_getDual?_of_mem_withUniqueDual (i : Fin l.length) (h : i ∈ l.withUniqueDual) :
∀ j, l.AreDualInSelf i j → j = l.getDual? i := by
simp [withUniqueDual] at h
exact fun j hj => h.2 j hj
lemma some_eq_getDual?_of_withUniqueDual_iff (i j : Fin l.length) (h : i ∈ l.withUniqueDual) :
l.AreDualInSelf i j ↔ some j = l.getDual? i := by
apply Iff.intro
intro h'
exact all_dual_eq_getDual?_of_mem_withUniqueDual l i h j h'
intro h'
have hj : j = (l.getDual? i).get (mem_withUniqueDual_isSome l i h) :=
Eq.symm (Option.get_of_mem (mem_withUniqueDual_isSome l i h) (id (Eq.symm h')))
subst hj
exact (getDual?_get_areDualInSelf l i (mem_withUniqueDual_isSome l i h)).symm
@[simp]
lemma eq_getDual?_get_of_withUniqueDual_iff (i j : Fin l.length) (h : i ∈ l.withUniqueDual) :
l.AreDualInSelf i j ↔ j = (l.getDual? i).get (mem_withUniqueDual_isSome l i h) := by
rw [l.some_eq_getDual?_of_withUniqueDual_iff i j h]
refine Iff.intro (fun h' => ?_) (fun h' => ?_)
exact Eq.symm (Option.get_of_mem (mem_withUniqueDual_isSome l i h) (id (Eq.symm h')))
simp [h']
@[simp]
lemma getDual?_get_getDual?_get_of_withUniqueDual (i : Fin l.length) (h : i ∈ l.withUniqueDual) :
(l.getDual? ((l.getDual? i).get (mem_withUniqueDual_isSome l i h))).get
(l.getDual?_getDual?_get_isSome i (mem_withUniqueDual_isSome l i h)) = i := by
by_contra hn
have h' : l.AreDualInSelf i ((l.getDual? ((l.getDual? i).get (mem_withUniqueDual_isSome l i h))).get (
getDual?_getDual?_get_isSome l i (mem_withUniqueDual_isSome l i h))) := by
simp [AreDualInSelf, hn]
exact fun a => hn (id (Eq.symm a))
simp [h] at h'
@[simp]
lemma getDual?_getDual?_get_of_withUniqueDual (i : Fin l.length) (h : i ∈ l.withUniqueDual) :
l.getDual? ((l.getDual? i).get (mem_withUniqueDual_isSome l i h)) = some i := by
nth_rewrite 3 [← l.getDual?_get_getDual?_get_of_withUniqueDual i h]
simp
@[simp]
lemma getDual?_getDual?_of_withUniqueDual (i : Fin l.length) (h : i ∈ l.withUniqueDual) :
(l.getDual? i).bind l.getDual? = some i := by
have h1 : (l.getDual? i) = some ((l.getDual? i).get (mem_withUniqueDual_isSome l i h)) := by simp
nth_rewrite 1 [h1]
rw [Option.some_bind']
simp [h]
@[simp]
lemma getDual?_get_of_mem_withUnique_mem (i : Fin l.length) (h : i ∈ l.withUniqueDual) :
(l.getDual? i).get (l.mem_withUniqueDual_isSome i h) ∈ l.withUniqueDual := by
simp [withUniqueDual, h]
intro j hj
have h1 : i = j := by
by_contra hn
have h' : l.AreDualInSelf i j := by
simp [AreDualInSelf, hn]
simp_all [AreDualInSelf, getDual, fromWithUnique]
simp [h] at h'
subst h'
simp_all [getDual]
subst h1
exact Eq.symm (getDual?_getDual?_get_of_withUniqueDual l i h)
/-!
## The equivalence defined by getDual?
-/
def getDualEquiv : l.withUniqueDual ≃ l.withUniqueDual where
toFun x := ⟨(l.getDual? x).get (l.mem_withUniqueDual_isSome x.1 x.2), by simp⟩
invFun x := ⟨(l.getDual? x).get (l.mem_withUniqueDual_isSome x.1 x.2), by simp⟩
left_inv x := SetCoe.ext (by simp)
right_inv x := SetCoe.ext (by simp)
@[simp]
lemma getDualEquiv_involutive : Function.Involutive l.getDualEquiv := by
intro x
simp [getDualEquiv, fromWithUnique]
/-!
## Properties of getDual! etc.
-/
2024-08-12 14:14:45 -04:00
lemma eq_getDual_of_withUniqueDual_iff (i : l.withUniqueDual) (j : Fin l.length) :
l.AreDualInSelf i j ↔ j = l.getDual! i := by
apply Iff.intro
intro h
exact (l.all_dual_eq_getDual_of_withUniqueDual i) j h
intro h
subst h
exact areDualInSelf_getDual! l i
@[simp]
lemma getDual!_getDual_of_withUniqueDual (i : l.withUniqueDual) :
l.getDual! (l.getDual i) = i := by
by_contra hn
have h' : l.AreDualInSelf i (l.getDual! (l.getDual i)) := by
simp [AreDualInSelf, hn]
simp_all [AreDualInSelf, getDual, fromWithUnique]
exact fun a => hn (id (Eq.symm a))
rw [eq_getDual_of_withUniqueDual_iff] at h'
have hx := l.areDualInSelf_getDual! (l.getDual i)
simp_all [getDual]
@[simp]
lemma getDual_getDual_of_withUniqueDual (i : l.withUniqueDual) :
l.getDual (l.getDual i) = l.fromWithUnique i :=
SetCoe.ext (getDual!_getDual_of_withUniqueDual l i)
@[simp]
lemma getDual?_getDual!_of_withUniqueDual (i : l.withUniqueDual) :
l.getDual? (l.getDual! i) = some i := by
change l.getDual? (l.getDual i) = some i
rw [getDual?_eq_some_getDual!]
simp
@[simp]
lemma getDual?_getDual_of_withUniqueDual (i : l.withUniqueDual) :
l.getDual? (l.getDual i) = some i := by
change l.getDual? (l.getDual i) = some i
rw [getDual?_eq_some_getDual!]
simp
/-!
## Equality of withUnqiueDual and withDual
-/
lemma withUnqiueDual_eq_withDual_iff_unique_forall :
l.withUniqueDual = l.withDual ↔
∀ (i : l.withDual) j, l.AreDualInSelf i j → j = l.getDual? i := by
apply Iff.intro
· intro h i j hj
rw [@Finset.ext_iff] at h
simp [withUniqueDual] at h
2024-08-13 16:36:42 -04:00
refine h i ?_ j hj
simp
2024-08-12 14:14:45 -04:00
· intro h
apply Finset.ext
intro i
apply Iff.intro
· intro hi
simp [withUniqueDual] at hi
2024-08-13 16:36:42 -04:00
simpa using hi.1
2024-08-12 14:14:45 -04:00
· intro hi
simp [withUniqueDual]
2024-08-13 16:36:42 -04:00
apply And.intro
simpa using hi
2024-08-12 14:14:45 -04:00
intro j hj
exact h ⟨i, hi⟩ j hj
lemma withUnqiueDual_eq_withDual_iff :
l.withUniqueDual = l.withDual ↔
∀ i, (l.getDual? i).bind l.getDual? = Option.guard (fun i => i ∈ l.withDual) i := by
apply Iff.intro
· intro h i
by_cases hi : i ∈ l.withDual
· have hii : i ∈ l.withUniqueDual := by
simp_all only
change (l.getDual? i).bind l.getDual? = _
2024-08-13 16:36:42 -04:00
simp [hii]
2024-08-12 14:14:45 -04:00
symm
rw [Option.guard_eq_some]
2024-08-13 16:36:42 -04:00
exact ⟨rfl, by simpa using hi⟩
2024-08-12 14:14:45 -04:00
· rw [getDual?_eq_none_on_not_mem l i hi]
simp
symm
2024-08-13 16:36:42 -04:00
simpa [Option.guard, ite_eq_right_iff, imp_false] using hi
2024-08-12 14:14:45 -04:00
· intro h
rw [withUnqiueDual_eq_withDual_iff_unique_forall]
intro i j hj
rcases l.getDual?_of_areDualInSelf hj with hi | hi | hi
· have hj' := h j
rw [hi] at hj'
simp at hj'
rw [hj']
symm
2024-08-13 16:36:42 -04:00
rw [Option.guard_eq_some, hi]
exact ⟨rfl, rfl⟩
2024-08-12 14:14:45 -04:00
· exact hi.symm
· have hj' := h j
rw [hi] at hj'
rw [h i] at hj'
have hi : Option.guard (fun i => i ∈ l.withDual) ↑i = some i := by
apply Option.guard_eq_some.mpr
simp
rw [hi] at hj'
simp at hj'
have hj'' := Option.guard_eq_some.mp hj'.symm
have hj''' := hj''.1
rw [hj'''] at hj
simp at hj
lemma withUnqiueDual_eq_withDual_iff_list_apply :
l.withUniqueDual = l.withDual ↔
(Fin.list l.length).map (fun i => (l.getDual? i).bind l.getDual?) =
(Fin.list l.length).map (fun i => Option.guard (fun i => i ∈ l.withDual) i) := by
rw [withUnqiueDual_eq_withDual_iff]
apply Iff.intro
intro h
apply congrFun
apply congrArg
exact (Set.eqOn_univ (fun i => (l.getDual? i).bind l.getDual?) fun i =>
Option.guard (fun i => i ∈ l.withDual) i).mp fun ⦃x⦄ _ => h x
intro h
intro i
simp only [List.map_inj_left] at h
have h1 {n : } (m : Fin n) : m ∈ Fin.list n := by
have h1' : (Fin.list n)[m] = m := Fin.getElem_list _ _
exact h1' ▸ List.getElem_mem _ _ _
exact h i (h1 i)
def withUnqiueDualEqWithDualBool : Bool :=
if (Fin.list l.length).map (fun i => (l.getDual? i).bind l.getDual?) =
(Fin.list l.length).map (fun i => Option.guard (fun i => i ∈ l.withDual) i) then
true
else
false
lemma withUnqiueDual_eq_withDual_iff_list_apply_bool :
l.withUniqueDual = l.withDual ↔ l.withUnqiueDualEqWithDualBool := by
rw [withUnqiueDual_eq_withDual_iff_list_apply]
apply Iff.intro
intro h
simp [withUnqiueDualEqWithDualBool, h]
intro h
simpa [withUnqiueDualEqWithDualBool] using h
@[simp]
lemma withUnqiueDual_eq_withDual_of_empty (h : l.withDual = ∅) :
l.withUniqueDual = l.withDual := by
rw [h, Finset.eq_empty_iff_forall_not_mem]
intro x
by_contra hx
have x' : l.withDual := ⟨x, l.mem_withDual_of_withUniqueDual ⟨x, hx⟩⟩
have hx' := x'.2
simp [h] at hx'
/-!
## Splitting withUniqueDual
-/
instance (i j : Option (Fin l.length)) : Decidable (i < j) :=
match i, j with
| none, none => isFalse (fun a => a)
| none, some _ => isTrue (by trivial)
| some _, none => isFalse (fun a => a)
| some i, some j => Fin.decLt i j
def withUniqueDualLT : Finset (Fin l.length) :=
Finset.filter (fun i => i < l.getDual? i) l.withUniqueDual
def withUniqueDualLTToWithUniqueDual (i : l.withUniqueDualLT) : l.withUniqueDual :=
⟨i.1, by
have hi := i.2
simp only [withUniqueDualLT, Finset.mem_filter] at hi
exact hi.1⟩
instance : Coe l.withUniqueDualLT l.withUniqueDual where
coe := l.withUniqueDualLTToWithUniqueDual
def withUniqueDualGT : Finset (Fin l.length) :=
Finset.filter (fun i => ¬ i < l.getDual? i) l.withUniqueDual
def withUniqueDualGTToWithUniqueDual (i : l.withUniqueDualGT) : l.withUniqueDual :=
⟨i.1, by
have hi := i.2
simp only [withUniqueDualGT, Finset.mem_filter] at hi
exact hi.1⟩
instance : Coe l.withUniqueDualGT l.withUniqueDual where
coe := l.withUniqueDualGTToWithUniqueDual
lemma withUniqueDualLT_disjoint_withUniqueDualGT :
Disjoint l.withUniqueDualLT l.withUniqueDualGT := by
rw [Finset.disjoint_iff_inter_eq_empty]
exact @Finset.filter_inter_filter_neg_eq (Fin l.length) _ _ _ _ _
lemma withUniqueDualLT_union_withUniqueDualGT :
l.withUniqueDualLT l.withUniqueDualGT = l.withUniqueDual :=
Finset.filter_union_filter_neg_eq _ _
/-! TODO: Replace with a mathlib lemma. -/
lemma option_not_lt (i j : Option (Fin l.length)) : i < j → i ≠ j → ¬ j < i := by
match i, j with
| none, none =>
intro _
simp
| none, some k =>
intro _
exact fun _ a => a
| some i, none =>
intro h
exact fun _ _ => h
| some i, some j =>
intro h h'
simp_all
change i < j at h
change ¬ j < i
exact Fin.lt_asymm h
/-! TODO: Replace with a mathlib lemma. -/
lemma lt_option_of_not (i j : Option (Fin l.length)) : ¬ j < i → i ≠ j → i < j := by
match i, j with
| none, none =>
intro _
simp
| none, some k =>
intro _
exact fun _ => trivial
| some i, none =>
intro h
exact fun _ => h trivial
| some i, some j =>
intro h h'
simp_all
change ¬ j < i at h
change i < j
omega
def withUniqueDualLTEquivGT : l.withUniqueDualLT ≃ l.withUniqueDualGT where
toFun i := ⟨l.getDualEquiv i, by
have hi := i.2
simp [withUniqueDualGT]
simp [getDualEquiv]
simp [withUniqueDualLT] at hi
apply option_not_lt
simpa [withUniqueDualLTToWithUniqueDual] using hi.2
exact Ne.symm (getDual?_neq_self l i)⟩
invFun i := ⟨l.getDualEquiv.symm i, by
have hi := i.2
simp [withUniqueDualLT]
simp [getDualEquiv]
simp [withUniqueDualGT] at hi
apply lt_option_of_not
simpa [withUniqueDualLTToWithUniqueDual] using hi.2
exact (getDual?_neq_self l i)⟩
left_inv x := SetCoe.ext (by simp [withUniqueDualGTToWithUniqueDual,
withUniqueDualLTToWithUniqueDual])
right_inv x := SetCoe.ext (by simp [withUniqueDualGTToWithUniqueDual,
withUniqueDualLTToWithUniqueDual])
def withUniqueLTGTEquiv : l.withUniqueDualLT ⊕ l.withUniqueDualLT ≃ l.withUniqueDual := by
apply (Equiv.sumCongr (Equiv.refl _ ) l.withUniqueDualLTEquivGT).trans
apply (Equiv.Finset.union _ _ l.withUniqueDualLT_disjoint_withUniqueDualGT).trans
apply (Equiv.subtypeEquivRight (by simp [l.withUniqueDualLT_union_withUniqueDualGT]))
end IndexList
end IndexNotation