PhysLean/HepLean/PerturbationTheory/Algebras/ProtoOperatorAlgebra/NormalOrder.lean

414 lines
18 KiB
Text
Raw Normal View History

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.NormalOrder
import HepLean.PerturbationTheory.Koszul.KoszulSign
/-!
# Normal ordering of the operator algebra
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
2025-01-22 08:53:08 +00:00
namespace ProtoOperatorAlgebra
variable {𝓞 : ProtoOperatorAlgebra 𝓕}
open CrAnAlgebra
open FieldStatistic
2025-01-22 06:26:28 +00:00
/-!
## Normal order of super-commutators.
The main result of this section is
`crAnF_normalOrder_superCommute_eq_zero_mul`.
-/
2025-01-23 15:06:11 +00:00
lemma crAnF_normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList
2025-01-23 15:06:11 +00:00
(φc φc' : 𝓕.CrAnStates) (hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφc' : 𝓕 |>ᶜ φc' = CreateAnnihilate.create) (φs φs' : List 𝓕.CrAnStates) :
𝓞.crAnF (𝓝ᶠ(ofCrAnList φs * [ofCrAnState φc, ofCrAnState φc']ₛca * ofCrAnList φs')) = 0 := by
rw [normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList φc φc' hφc hφc' φs φs']
rw [map_smul, map_mul, map_mul, map_mul, 𝓞.superCommute_create_create φc φc' hφc hφc']
simp
lemma crAnF_normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
2025-01-23 15:06:11 +00:00
(φa φa' : 𝓕.CrAnStates) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(hφa' : 𝓕 |>ᶜ φa' = CreateAnnihilate.annihilate) (φs φs' : List 𝓕.CrAnStates) :
𝓞.crAnF (𝓝ᶠ(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * ofCrAnList φs')) = 0 := by
rw [normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList φa φa' hφa hφa' φs φs']
rw [map_smul, map_mul, map_mul, map_mul, 𝓞.superCommute_annihilate_annihilate φa φa' hφa hφa']
simp
lemma crAnF_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero
(φa φa' : 𝓕.CrAnStates) (φs φs' : List 𝓕.CrAnStates) :
𝓞.crAnF (normalOrder
2025-01-24 05:19:04 +00:00
(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * ofCrAnList φs')) = 0 := by
rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa) with hφa | hφa
<;> rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa') with hφa' | hφa'
· rw [normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList φa φa' hφa hφa' φs φs']
rw [map_smul, map_mul, map_mul, map_mul, 𝓞.superCommute_create_create φa φa' hφa hφa']
simp
· rw [normalOrder_superCommute_create_annihilate φa φa' hφa hφa' (ofCrAnList φs)
(ofCrAnList φs')]
simp
· rw [normalOrder_superCommute_annihilate_create φa' φa hφa' hφa (ofCrAnList φs)
(ofCrAnList φs')]
simp
· rw [normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList φa φa' hφa hφa' φs φs']
rw [map_smul, map_mul, map_mul, map_mul, 𝓞.superCommute_annihilate_annihilate φa φa' hφa hφa']
simp
lemma crAnF_normalOrder_superCommute_ofCrAnList_eq_zero
(φa φa' : 𝓕.CrAnStates) (φs : List 𝓕.CrAnStates)
(a : 𝓕.CrAnAlgebra) : 𝓞.crAnF (normalOrder (ofCrAnList φs *
2025-01-24 05:19:04 +00:00
[ofCrAnState φa, ofCrAnState φa']ₛca * a)) = 0 := by
change (𝓞.crAnF.toLinearMap ∘ₗ normalOrder ∘ₗ
2025-01-24 05:19:04 +00:00
mulLinearMap ((ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca))) a = 0
have hf : 𝓞.crAnF.toLinearMap ∘ₗ normalOrder ∘ₗ
2025-01-24 05:19:04 +00:00
mulLinearMap (ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca) = 0 := by
apply ofCrAnListBasis.ext
intro l
simp only [ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
exact crAnF_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero φa φa' φs l
rw [hf]
simp
lemma crAnF_normalOrder_superCommute_ofCrAnState_eq_zero_mul (φa φa' : 𝓕.CrAnStates)
(a b : 𝓕.CrAnAlgebra) :
2025-01-24 05:19:04 +00:00
𝓞.crAnF (normalOrder (a * [ofCrAnState φa, ofCrAnState φa']ₛca * b)) = 0 := by
rw [mul_assoc]
change (𝓞.crAnF.toLinearMap ∘ₗ normalOrder ∘ₗ mulLinearMap.flip
2025-01-24 05:19:04 +00:00
([ofCrAnState φa, ofCrAnState φa']ₛca * b)) a = 0
have hf : 𝓞.crAnF.toLinearMap ∘ₗ normalOrder ∘ₗ mulLinearMap.flip
([ofCrAnState φa, ofCrAnState φa']ₛca * b) = 0 := by
apply ofCrAnListBasis.ext
intro l
simp only [mulLinearMap, ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk, AlgHom.toLinearMap_apply,
LinearMap.zero_apply]
rw [← mul_assoc]
exact crAnF_normalOrder_superCommute_ofCrAnList_eq_zero φa φa' _ _
rw [hf]
simp
lemma crAnF_normalOrder_superCommute_ofCrAnState_ofCrAnList_eq_zero_mul (φa : 𝓕.CrAnStates)
(φs : List 𝓕.CrAnStates)
(a b : 𝓕.CrAnAlgebra) :
2025-01-24 05:19:04 +00:00
𝓞.crAnF (normalOrder (a * [ofCrAnState φa, ofCrAnList φs]ₛca * b)) = 0 := by
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList_eq_sum]
rw [Finset.mul_sum, Finset.sum_mul]
rw [map_sum, map_sum]
apply Fintype.sum_eq_zero
intro n
rw [← mul_assoc, ← mul_assoc]
rw [mul_assoc _ _ b, ofCrAnList_singleton]
rw [crAnF_normalOrder_superCommute_ofCrAnState_eq_zero_mul]
lemma crAnF_normalOrder_superCommute_ofCrAnList_ofCrAnState_eq_zero_mul (φa : 𝓕.CrAnStates)
(φs : List 𝓕.CrAnStates)
(a b : 𝓕.CrAnAlgebra) :
2025-01-24 05:19:04 +00:00
𝓞.crAnF (normalOrder (a * [ofCrAnList φs, ofCrAnState φa]ₛca * b)) = 0 := by
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList_symm, ofCrAnList_singleton]
simp only [FieldStatistic.instCommGroup.eq_1, FieldStatistic.ofList_singleton, mul_neg,
Algebra.mul_smul_comm, neg_mul, Algebra.smul_mul_assoc, map_neg, map_smul]
rw [crAnF_normalOrder_superCommute_ofCrAnState_ofCrAnList_eq_zero_mul]
simp
lemma crAnF_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero_mul
(φs φs' : List 𝓕.CrAnStates)
(a b : 𝓕.CrAnAlgebra) :
2025-01-24 05:19:04 +00:00
𝓞.crAnF (normalOrder (a * [ofCrAnList φs, ofCrAnList φs']ₛca * b)) = 0 := by
rw [superCommute_ofCrAnList_ofCrAnList_eq_sum, Finset.mul_sum, Finset.sum_mul]
rw [map_sum, map_sum]
apply Fintype.sum_eq_zero
intro n
rw [← mul_assoc, ← mul_assoc]
rw [mul_assoc _ _ b]
rw [crAnF_normalOrder_superCommute_ofCrAnList_ofCrAnState_eq_zero_mul]
lemma crAnF_normalOrder_superCommute_ofCrAnList_eq_zero_mul
(φs : List 𝓕.CrAnStates)
(a b c : 𝓕.CrAnAlgebra) :
2025-01-24 05:19:04 +00:00
𝓞.crAnF (normalOrder (a * [ofCrAnList φs, c]ₛca * b)) = 0 := by
change (𝓞.crAnF.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommute (ofCrAnList φs)) c = 0
have hf : (𝓞.crAnF.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommute (ofCrAnList φs)) = 0 := by
apply ofCrAnListBasis.ext
intro φs'
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
LinearMap.zero_apply]
rw [crAnF_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero_mul]
rw [hf]
simp
@[simp]
lemma crAnF_normalOrder_superCommute_eq_zero_mul
2025-01-24 05:19:04 +00:00
(a b c d : 𝓕.CrAnAlgebra) : 𝓞.crAnF (normalOrder (a * [d, c]ₛca * b)) = 0 := by
change (𝓞.crAnF.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommute.flip c) d = 0
have hf : (𝓞.crAnF.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommute.flip c) = 0 := by
apply ofCrAnListBasis.ext
intro φs
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
LinearMap.zero_apply]
rw [crAnF_normalOrder_superCommute_ofCrAnList_eq_zero_mul]
rw [hf]
simp
@[simp]
lemma crAnF_normalOrder_superCommute_eq_zero_mul_right
2025-01-24 05:19:04 +00:00
(b c d : 𝓕.CrAnAlgebra) : 𝓞.crAnF (normalOrder ([d, c]ₛca * b)) = 0 := by
rw [← crAnF_normalOrder_superCommute_eq_zero_mul 1 b c d]
simp
@[simp]
lemma crAnF_normalOrder_superCommute_eq_zero_mul_left
2025-01-24 05:19:04 +00:00
(a c d : 𝓕.CrAnAlgebra) : 𝓞.crAnF (normalOrder (a * [d, c]ₛca)) = 0 := by
rw [← crAnF_normalOrder_superCommute_eq_zero_mul a 1 c d]
simp
@[simp]
lemma crAnF_normalOrder_superCommute_eq_zero
2025-01-24 05:19:04 +00:00
(c d : 𝓕.CrAnAlgebra) : 𝓞.crAnF (normalOrder [d, c]ₛca) = 0 := by
rw [← crAnF_normalOrder_superCommute_eq_zero_mul 1 1 c d]
simp
2025-01-22 06:26:28 +00:00
/-!
## Swapping terms in a normal order.
-/
lemma crAnF_normalOrder_ofState_ofState_swap (φ φ' : 𝓕.States) :
𝓞.crAnF (normalOrder (ofState φ * ofState φ')) =
2025-01-22 06:26:28 +00:00
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • 𝓞.crAnF (normalOrder (ofState φ' * ofState φ)) := by
rw [← ofStateList_singleton, ← ofStateList_singleton,
ofStateList_mul_ofStateList_eq_superCommute]
simp
lemma crAnF_normalOrder_ofCrAnState_ofCrAnList_swap (φ : 𝓕.CrAnStates)
(φs : List 𝓕.CrAnStates) :
𝓞.crAnF (normalOrder (ofCrAnState φ * ofCrAnList φs)) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • 𝓞.crAnF (normalOrder (ofCrAnList φs * ofCrAnState φ)) := by
rw [← ofCrAnList_singleton, ofCrAnList_mul_ofCrAnList_eq_superCommute]
simp
lemma crAnF_normalOrder_ofCrAnState_ofStatesList_swap (φ : 𝓕.CrAnStates)
(φ' : List 𝓕.States) :
𝓞.crAnF (normalOrder (ofCrAnState φ * ofStateList φ')) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
𝓞.crAnF (normalOrder (ofStateList φ' * ofCrAnState φ)) := by
rw [← ofCrAnList_singleton, ofCrAnList_mul_ofStateList_eq_superCommute]
simp
lemma crAnF_normalOrder_anPart_ofStatesList_swap (φ : 𝓕.States)
(φ' : List 𝓕.States) :
𝓞.crAnF (normalOrder (anPart φ * ofStateList φ')) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
𝓞.crAnF (normalOrder (ofStateList φ' * anPart φ)) := by
match φ with
2025-01-23 10:46:50 +00:00
| .inAsymp φ =>
simp
| .position φ =>
simp only [anPart_position, instCommGroup.eq_1]
rw [crAnF_normalOrder_ofCrAnState_ofStatesList_swap]
rfl
2025-01-23 10:46:50 +00:00
| .outAsymp φ =>
simp only [anPart_posAsymp, instCommGroup.eq_1]
rw [crAnF_normalOrder_ofCrAnState_ofStatesList_swap]
rfl
lemma crAnF_normalOrder_ofStatesList_anPart_swap (φ : 𝓕.States) (φ' : List 𝓕.States) :
𝓞.crAnF (normalOrder (ofStateList φ' * anPart φ))
= 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
𝓞.crAnF (normalOrder (anPart φ * ofStateList φ')) := by
rw [crAnF_normalOrder_anPart_ofStatesList_swap]
simp [smul_smul, FieldStatistic.exchangeSign_mul_self]
lemma crAnF_normalOrder_ofStatesList_mul_anPart_swap (φ : 𝓕.States)
(φ' : List 𝓕.States) :
𝓞.crAnF (normalOrder (ofStateList φ') * anPart φ) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
𝓞.crAnF (normalOrder (anPart φ * ofStateList φ')) := by
rw [← normalOrder_mul_anPart]
rw [crAnF_normalOrder_ofStatesList_anPart_swap]
2025-01-22 06:26:28 +00:00
/-!
## Super commutators with a normal ordered term as sums
-/
lemma crAnF_ofCrAnState_superCommute_normalOrder_ofCrAnList_eq_sum (φ : 𝓕.CrAnStates)
2025-01-23 15:06:11 +00:00
(φs : List 𝓕.CrAnStates) : 𝓞.crAnF ([ofCrAnState φ, normalOrder (ofCrAnList φs)]ₛca) =
∑ n : Fin φs.length, 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) •
2025-01-23 15:06:11 +00:00
𝓞.crAnF ([ofCrAnState φ, ofCrAnState φs[n]]ₛca)
* 𝓞.crAnF (normalOrder (ofCrAnList (φs.eraseIdx n))) := by
rw [normalOrder_ofCrAnList, map_smul, map_smul]
rw [crAnF_superCommute_ofCrAnState_ofCrAnList_eq_sum, sum_normalOrderList_length]
simp only [instCommGroup.eq_1, List.get_eq_getElem, normalOrderList_get_normalOrderEquiv,
normalOrderList_eraseIdx_normalOrderEquiv, Algebra.smul_mul_assoc, map_sum, map_smul, map_mul,
Finset.smul_sum, Fin.getElem_fin]
congr
funext n
rw [ofCrAnList_eq_normalOrder, map_smul, mul_smul_comm, smul_smul, smul_smul]
by_cases hs : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[n])
· congr
erw [normalOrderSign_eraseIdx, ← hs]
trans (normalOrderSign φs * normalOrderSign φs) *
(𝓢(𝓕 |>ₛ (φs.get n), 𝓕 |>ₛ ((normalOrderList φs).take (normalOrderEquiv n))) *
𝓢(𝓕 |>ₛ (φs.get n), 𝓕 |>ₛ ((normalOrderList φs).take (normalOrderEquiv n))))
* 𝓢(𝓕 |>ₛ (φs.get n), 𝓕 |>ₛ (φs.take n))
· ring_nf
rw [hs]
rfl
· simp [hs]
· erw [𝓞.superCommute_different_statistics _ _ hs]
simp
lemma crAnF_ofCrAnState_superCommute_normalOrder_ofStateList_eq_sum (φ : 𝓕.CrAnStates)
2025-01-23 15:06:11 +00:00
(φs : List 𝓕.States) : 𝓞.crAnF ([ofCrAnState φ, normalOrder (ofStateList φs)]ₛca) =
∑ n : Fin φs.length, 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) •
2025-01-23 15:06:11 +00:00
𝓞.crAnF ([ofCrAnState φ, ofState φs[n]]ₛca)
* 𝓞.crAnF (normalOrder (ofStateList (φs.eraseIdx n))) := by
conv_lhs =>
rw [ofStateList_sum, map_sum, map_sum, map_sum]
enter [2, s]
rw [crAnF_ofCrAnState_superCommute_normalOrder_ofCrAnList_eq_sum,
CrAnSection.sum_over_length]
enter [2, n]
rw [CrAnSection.take_statistics_eq_take_state_statistics, smul_mul_assoc]
rw [Finset.sum_comm]
refine Finset.sum_congr rfl (fun n _ => ?_)
simp only [instCommGroup.eq_1, Fin.coe_cast, Fin.getElem_fin,
CrAnSection.sum_eraseIdxEquiv n _ n.prop,
CrAnSection.eraseIdxEquiv_symm_getElem,
CrAnSection.eraseIdxEquiv_symm_eraseIdx, ← Finset.smul_sum, Algebra.smul_mul_assoc]
conv_lhs =>
enter [2, 2, n]
rw [← Finset.mul_sum]
rw [← Finset.sum_mul, ← map_sum, ← map_sum, ← ofState, ← map_sum, ← map_sum, ← ofStateList_sum]
2025-01-24 11:09:25 +00:00
/--
Within a proto-operator algebra we have that
`[anPart φ, 𝓝ᶠ(φs)] = ∑ i, sᵢ • [anPart φ, φᵢ]ₛca * 𝓝ᶠ(φ₀…φᵢ₋₁φᵢ₊₁…φₙ)`
2025-01-24 11:09:25 +00:00
where `sᵢ` is the exchange sign for `φ` and `φ₀…φᵢ₋₁`.
The origin of this result is
- `superCommute_ofCrAnList_ofCrAnList_eq_sum`
-/
lemma crAnF_anPart_superCommute_normalOrder_ofStateList_eq_sum (φ : 𝓕.States) (φs : List 𝓕.States) :
𝓞.crAnF ([anPart φ, 𝓝ᶠ(φs)]ₛca) =
∑ n : Fin φs.length, 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) •
𝓞.crAnF ([anPart φ, ofState φs[n]]ₛca) * 𝓞.crAnF 𝓝ᶠ(φs.eraseIdx n) := by
match φ with
2025-01-23 10:46:50 +00:00
| .inAsymp φ =>
simp
| .position φ =>
simp only [anPart_position, instCommGroup.eq_1, Fin.getElem_fin, Algebra.smul_mul_assoc]
rw [crAnF_ofCrAnState_superCommute_normalOrder_ofStateList_eq_sum]
simp [crAnStatistics]
2025-01-23 10:46:50 +00:00
| .outAsymp φ =>
simp only [anPart_posAsymp, instCommGroup.eq_1, Fin.getElem_fin, Algebra.smul_mul_assoc]
rw [crAnF_ofCrAnState_superCommute_normalOrder_ofStateList_eq_sum]
simp [crAnStatistics]
2025-01-22 06:26:28 +00:00
/-!
## Multiplying with normal ordered terms
2025-01-24 11:09:25 +00:00
-/
/--
Within a proto-operator algebra we have that
`anPart φ * 𝓝ᶠ(φ₀φ₁…φₙ) = 𝓝ᶠ((anPart φ)φ₀φ₁…φₙ) + [anpart φ, 𝓝ᶠ(φ₀φ₁…φₙ)]ₛca`.
2025-01-22 06:26:28 +00:00
-/
lemma crAnF_anPart_mul_normalOrder_ofStatesList_eq_superCommute (φ : 𝓕.States)
(φ' : List 𝓕.States) :
𝓞.crAnF (anPart φ * normalOrder (ofStateList φ')) =
𝓞.crAnF (normalOrder (anPart φ * ofStateList φ')) +
𝓞.crAnF ([anPart φ, normalOrder (ofStateList φ')]ₛca) := by
rw [anPart_mul_normalOrder_ofStateList_eq_superCommute]
simp only [instCommGroup.eq_1, map_add, map_smul]
congr
rw [crAnF_normalOrder_anPart_ofStatesList_swap]
2025-01-24 11:09:25 +00:00
/--
Within a proto-operator algebra we have that
`φ * 𝓝ᶠ(φ₀φ₁…φₙ) = 𝓝ᶠ(φφ₀φ₁…φₙ) + [anpart φ, 𝓝ᶠ(φ₀φ₁…φₙ)]ₛca`.
2025-01-24 11:09:25 +00:00
-/
lemma crAnF_ofState_mul_normalOrder_ofStatesList_eq_superCommute (φ : 𝓕.States)
(φs : List 𝓕.States) : 𝓞.crAnF (ofState φ * 𝓝ᶠ(φs)) =
2025-01-24 11:09:25 +00:00
𝓞.crAnF (normalOrder (ofState φ * ofStateList φs)) +
𝓞.crAnF ([anPart φ, 𝓝ᶠ(φs)]ₛca) := by
conv_lhs => rw [ofState_eq_crPart_add_anPart]
rw [add_mul, map_add, crAnF_anPart_mul_normalOrder_ofStatesList_eq_superCommute, ← add_assoc,
← normalOrder_crPart_mul, ← map_add]
conv_lhs =>
lhs
rw [← map_add, ← add_mul, ← ofState_eq_crPart_add_anPart]
/-- In the expansion of `ofState φ * normalOrder (ofStateList φs)` the element
of `𝓞.A` associated with contracting `φ` with the (optional) `n`th element of `φs`. -/
noncomputable def contractStateAtIndex (φ : 𝓕.States) (φs : List 𝓕.States)
(n : Option (Fin φs.length)) : 𝓞.A :=
match n with
| none => 1
| some n => 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) •
𝓞.crAnF ([anPart φ, ofState φs[n]]ₛca)
2025-01-23 14:18:02 +00:00
/--
Within a proto-operator algebra,
`φ * N(φ₀φ₁…φₙ) = N(φφ₀φ₁…φₙ) + ∑ i, (sᵢ • [anPart φ, φᵢ]ₛ) * N(φ₀φ₁…φᵢ₋₁φᵢ₊₁…φₙ)`,
where `sₙ` is the exchange sign for `φ` and `φ₀φ₁…φᵢ₋₁`.
-/
lemma crAnF_ofState_mul_normalOrder_ofStatesList_eq_sum (φ : 𝓕.States)
(φs : List 𝓕.States) :
𝓞.crAnF (ofState φ * normalOrder (ofStateList φs)) =
∑ n : Option (Fin φs.length),
contractStateAtIndex φ φs n *
𝓞.crAnF (normalOrder (ofStateList (HepLean.List.optionEraseZ φs φ n))) := by
rw [crAnF_ofState_mul_normalOrder_ofStatesList_eq_superCommute]
rw [crAnF_anPart_superCommute_normalOrder_ofStateList_eq_sum]
simp only [instCommGroup.eq_1, Fin.getElem_fin, Algebra.smul_mul_assoc, contractStateAtIndex,
Fintype.sum_option, one_mul]
rfl
2025-01-22 06:26:28 +00:00
/-!
## Cons vs insertIdx for a normal ordered term.
-/
2025-01-23 14:18:02 +00:00
/--
Within a proto-operator algebra, `N(φφ₀φ₁…φₙ) = s • N(φ₀…φₖ₋₁φφₖ…φₙ)`, where
`s` is the exchange sign for `φ` and `φ₀…φₖ₋₁`.
-/
lemma crAnF_ofState_normalOrder_insert (φ : 𝓕.States) (φs : List 𝓕.States)
(k : Fin φs.length.succ) :
𝓞.crAnF (normalOrder (ofStateList (φ :: φs))) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs.take k) • 𝓞.crAnF (normalOrder (ofStateList (φs.insertIdx k φ))) := by
have hl : φs.insertIdx k φ = φs.take k ++ [φ] ++ φs.drop k := by
rw [HepLean.List.insertIdx_eq_take_drop]
simp
rw [hl]
rw [ofStateList_append, ofStateList_append]
rw [ofStateList_mul_ofStateList_eq_superCommute, add_mul]
simp only [instCommGroup.eq_1, Nat.succ_eq_add_one, ofList_singleton, Algebra.smul_mul_assoc,
map_add, map_smul, crAnF_normalOrder_superCommute_eq_zero_mul_right, add_zero, smul_smul,
exchangeSign_mul_self_swap, one_smul]
rw [← ofStateList_append, ← ofStateList_append]
simp
2025-01-22 08:53:08 +00:00
end ProtoOperatorAlgebra
end FieldSpecification