PhysLean/HepLean/SpaceTime/WeylFermion/Basic.lean

137 lines
6.6 KiB
Text
Raw Normal View History

2024-09-15 19:01:34 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Meta.Informal
/-!
# Weyl fermions
-/
/-!
## The definition of Weyl fermion vector spaces.
2024-09-17 05:23:09 -04:00
We define the vector spaces corresponding to different types of Weyl fermions.
Note: We should prevent casting between these vector spaces.
2024-09-15 19:01:34 -04:00
-/
informal_definition leftHandedWeylFermion where
math :≈ "The vector space ^2 carrying the fundamental representation of SL(2,C)."
physics :≈ "A Weyl fermion with indices ψ_a."
2024-09-15 19:01:34 -04:00
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
informal_definition rightHandedWeylFermion where
math :≈ "The vector space ^2 carrying the conjguate representation of SL(2,C)."
physics :≈ "A Weyl fermion with indices ψ_{dot a}."
2024-09-15 19:01:34 -04:00
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
informal_definition altLeftHandedWeylFermion where
math :≈ "The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)ᵀ."
physics :≈ "A Weyl fermion with indices ψ^a."
2024-09-15 19:01:34 -04:00
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
informal_definition altRightHandedWeylFermion where
math :≈ "The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)^†."
physics :≈ "A Weyl fermion with indices ψ^{dot a}."
2024-09-15 19:01:34 -04:00
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
/-!
## Equivalences between Weyl fermion vector spaces.
-/
2024-09-16 07:40:15 -04:00
2024-09-15 19:01:34 -04:00
informal_definition leftHandedWeylFermionAltEquiv where
math :≈ "The linear equiv between leftHandedWeylFermion and altLeftHandedWeylFermion given
2024-09-16 10:07:40 -04:00
by multiplying an element of rightHandedWeylFermion by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`."
2024-09-16 05:32:40 -04:00
deps :≈ [`leftHandedWeylFermion, `altLeftHandedWeylFermion]
2024-09-15 19:01:34 -04:00
informal_lemma leftHandedWeylFermionAltEquiv_equivariant where
math :≈ "The linear equiv leftHandedWeylFermionAltEquiv is equivariant with respect to the
action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
2024-09-16 05:32:40 -04:00
deps :≈ [`leftHandedWeylFermionAltEquiv]
2024-09-15 19:01:34 -04:00
informal_definition rightHandedWeylFermionAltEquiv where
math :≈ "The linear equiv between rightHandedWeylFermion and altRightHandedWeylFermion given
2024-09-16 10:07:40 -04:00
by multiplying an element of rightHandedWeylFermion by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`"
2024-09-16 07:40:15 -04:00
deps :≈ [`rightHandedWeylFermion, `altRightHandedWeylFermion]
2024-09-15 19:01:34 -04:00
informal_lemma rightHandedWeylFermionAltEquiv_equivariant where
math :≈ "The linear equiv rightHandedWeylFermionAltEquiv is equivariant with respect to the
action of SL(2,C) on rightHandedWeylFermion and altRightHandedWeylFermion."
2024-09-16 07:40:15 -04:00
deps :≈ [`rightHandedWeylFermionAltEquiv]
/-!
## Contraction of Weyl fermions.
-/
informal_definition leftAltWeylFermionContraction where
math :≈ "The linear map from leftHandedWeylFermion ⊗ altLeftHandedWeylFermion to given by
summing over components of leftHandedWeylFermion and altLeftHandedWeylFermion in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a left-handed Weyl fermion with a right-handed Weyl fermion.
In index notation this is ψ_a φ^a."
deps :≈ [``leftHandedWeylFermion, ``altLeftHandedWeylFermion]
informal_lemma leftAltWeylFermionContraction_invariant where
math :≈ "The contraction leftAltWeylFermionContraction is invariant with respect to
the action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
2024-09-17 05:23:09 -04:00
deps :≈ [``leftAltWeylFermionContraction]
informal_definition altLeftWeylFermionContraction where
2024-09-18 07:41:48 -04:00
math :≈ "The linear map from altLeftHandedWeylFermion ⊗ leftHandedWeylFermion to given by
summing over components of altLeftHandedWeylFermion and leftHandedWeylFermion in the
2024-09-17 05:23:09 -04:00
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a left-handed Weyl fermion with a right-handed Weyl fermion.
In index notation this is φ^a ψ_a ."
deps :≈ [``leftHandedWeylFermion, ``altLeftHandedWeylFermion]
informal_lemma leftAltWeylFermionContraction_symm_altLeftWeylFermionContraction where
math :≈ "The linear map altLeftWeylFermionContraction is leftAltWeylFermionContraction composed
with the braiding of the tensor product."
deps :≈ [``leftAltWeylFermionContraction, ``altLeftWeylFermionContraction]
informal_lemma altLeftWeylFermionContraction_invariant where
math :≈ "The contraction altLeftWeylFermionContraction is invariant with respect to
the action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
deps :≈ [``altLeftWeylFermionContraction]
2024-09-17 07:08:03 -04:00
informal_definition rightAltWeylFermionContraction where
math :≈ "The linear map from rightHandedWeylFermion ⊗ altRightHandedWeylFermion to given by
summing over components of rightHandedWeylFermion and altRightHandedWeylFermion in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
In index notation this is ψ_{dot a} φ^{dot a}."
deps :≈ [``rightHandedWeylFermion, ``altRightHandedWeylFermion]
informal_lemma rightAltWeylFermionContraction_invariant where
math :≈ "The contraction rightAltWeylFermionContraction is invariant with respect to
the action of SL(2,C) on rightHandedWeylFermion and altRightHandedWeylFermion."
deps :≈ [``rightAltWeylFermionContraction]
informal_definition altRightWeylFermionContraction where
math :≈ "The linear map from altRightHandedWeylFermion ⊗ rightHandedWeylFermion to given by
summing over components of altRightHandedWeylFermion and rightHandedWeylFermion in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
In index notation this is φ^{dot a} ψ_{dot a}."
deps :≈ [``rightHandedWeylFermion, ``altRightHandedWeylFermion]
informal_lemma rightAltWeylFermionContraction_symm_altRightWeylFermionContraction where
math :≈ "The linear map altRightWeylFermionContraction is rightAltWeylFermionContraction composed
with the braiding of the tensor product."
deps :≈ [``rightAltWeylFermionContraction, ``altRightWeylFermionContraction]
informal_lemma altRightWeylFermionContraction_invariant where
math :≈ "The contraction altRightWeylFermionContraction is invariant with respect to
the action of SL(2,C) on rightHandedWeylFermion and altRightHandedWeylFermion."
deps :≈ [``altRightWeylFermionContraction]