PhysLean/HepLean/PerturbationTheory/FieldSpecification/TimeOrder.lean

545 lines
23 KiB
Text
Raw Normal View History

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
2025-01-30 11:00:25 +00:00
import HepLean.PerturbationTheory.FieldSpecification.CrAnSection
import HepLean.PerturbationTheory.FieldSpecification.NormalOrder
/-!
# Time ordering of states
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
/-!
## Time ordering for states
-/
/-- The time ordering relation on states. We have that `timeOrderRel φ0 φ1` is true
if and only if `φ1` has a time less-then or equal to `φ0`, or `φ1` is a negative
asymptotic state, or `φ0` is a positive asymptotic state. -/
def timeOrderRel : 𝓕.States → 𝓕.States → Prop
2025-01-23 10:46:50 +00:00
| States.outAsymp _, _ => True
| States.position φ0, States.position φ1 => φ1.2 0 ≤ φ0.2 0
2025-01-23 10:46:50 +00:00
| States.position _, States.inAsymp _ => True
| States.position _, States.outAsymp _ => False
| States.inAsymp _, States.outAsymp _ => False
| States.inAsymp _, States.position _ => False
| States.inAsymp _, States.inAsymp _ => True
/-- The relation `timeOrderRel` is decidable, but not computablly so due to
`Real.decidableLE`. -/
noncomputable instance : (φ φ' : 𝓕.States) → Decidable (timeOrderRel φ φ')
2025-01-23 10:46:50 +00:00
| States.outAsymp _, _ => isTrue True.intro
| States.position φ0, States.position φ1 => inferInstanceAs (Decidable (φ1.2 0 ≤ φ0.2 0))
2025-01-23 10:46:50 +00:00
| States.position _, States.inAsymp _ => isTrue True.intro
| States.position _, States.outAsymp _ => isFalse (fun a => a)
| States.inAsymp _, States.outAsymp _ => isFalse (fun a => a)
| States.inAsymp _, States.position _ => isFalse (fun a => a)
| States.inAsymp _, States.inAsymp _ => isTrue True.intro
/-- Time ordering is total. -/
instance : IsTotal 𝓕.States 𝓕.timeOrderRel where
total a b := by
cases a <;> cases b <;>
simp only [or_self, or_false, or_true, timeOrderRel, Fin.isValue, implies_true, imp_self,
IsEmpty.forall_iff]
exact LinearOrder.le_total _ _
/-- Time ordering is transitive. -/
instance : IsTrans 𝓕.States 𝓕.timeOrderRel where
trans a b c := by
cases a <;> cases b <;> cases c <;>
simp only [timeOrderRel, Fin.isValue, implies_true, imp_self, IsEmpty.forall_iff]
exact fun h1 h2 => Preorder.le_trans _ _ _ h2 h1
noncomputable section
open FieldStatistic
open HepLean.List
/-- Given a list `φ :: φs` of states, the (zero-based) position of the state which is
of maximum time. For example
- for the list `[φ1(t = 4), φ2(t = 5), φ3(t = 3), φ4(t = 5)]` this would return `1`.
This is defined for a list `φ :: φs` instead of `φs` to ensure that such a position exists.
-/
def maxTimeFieldPos (φ : 𝓕.States) (φs : List 𝓕.States) : :=
insertionSortMinPos timeOrderRel φ φs
lemma maxTimeFieldPos_lt_length (φ : 𝓕.States) (φs : List 𝓕.States) :
maxTimeFieldPos φ φs < (φ :: φs).length := by
simp [maxTimeFieldPos]
/-- Given a list `φ :: φs` of states, the left-most state of maximum time, if there are more.
As an example:
- for the list `[φ1(t = 4), φ2(t = 5), φ3(t = 3), φ4(t = 5)]` this would return `φ2(t = 5)`.
It is the state at the position `maxTimeFieldPos φ φs`.
-/
def maxTimeField (φ : 𝓕.States) (φs : List 𝓕.States) : 𝓕.States :=
insertionSortMin timeOrderRel φ φs
/-- Given a list `φ :: φs` of states, the list with the left-most state of maximum
time removed.
As an example:
- for the list `[φ1(t = 4), φ2(t = 5), φ3(t = 3), φ4(t = 5)]` this would return
`[φ1(t = 4), φ3(t = 3), φ4(t = 5)]`.
-/
def eraseMaxTimeField (φ : 𝓕.States) (φs : List 𝓕.States) : List 𝓕.States :=
insertionSortDropMinPos timeOrderRel φ φs
@[simp]
lemma eraseMaxTimeField_length (φ : 𝓕.States) (φs : List 𝓕.States) :
(eraseMaxTimeField φ φs).length = φs.length := by
simp [eraseMaxTimeField, insertionSortDropMinPos, eraseIdx_length']
lemma maxTimeFieldPos_lt_eraseMaxTimeField_length_succ (φ : 𝓕.States) (φs : List 𝓕.States) :
maxTimeFieldPos φ φs < (eraseMaxTimeField φ φs).length.succ := by
simp only [eraseMaxTimeField_length, Nat.succ_eq_add_one]
exact maxTimeFieldPos_lt_length φ φs
/-- Given a list `φ :: φs` of states, the position of the left-most state of maximum
time as an eement of `Fin (eraseMaxTimeField φ φs).length.succ`.
As an example:
- for the list `[φ1(t = 4), φ2(t = 5), φ3(t = 3), φ4(t = 5)]` this would return `⟨1,...⟩`.
-/
def maxTimeFieldPosFin (φ : 𝓕.States) (φs : List 𝓕.States) :
Fin (eraseMaxTimeField φ φs).length.succ :=
insertionSortMinPosFin timeOrderRel φ φs
lemma lt_maxTimeFieldPosFin_not_timeOrder (φ : 𝓕.States) (φs : List 𝓕.States)
(i : Fin (eraseMaxTimeField φ φs).length)
(hi : (maxTimeFieldPosFin φ φs).succAbove i < maxTimeFieldPosFin φ φs) :
¬ timeOrderRel ((eraseMaxTimeField φ φs)[i.val]) (maxTimeField φ φs) := by
exact insertionSortMin_lt_mem_insertionSortDropMinPos_of_lt timeOrderRel φ φs i hi
lemma timeOrder_maxTimeField (φ : 𝓕.States) (φs : List 𝓕.States)
(i : Fin (eraseMaxTimeField φ φs).length) :
timeOrderRel (maxTimeField φ φs) ((eraseMaxTimeField φ φs)[i.val]) := by
exact insertionSortMin_lt_mem_insertionSortDropMinPos timeOrderRel φ φs _
/-- The sign associated with putting a list of states into time order (with
the state of greatest time to the left).
We pick up a minus sign for every fermion paired crossed. -/
def timeOrderSign (φs : List 𝓕.States) : :=
Wick.koszulSign 𝓕.statesStatistic 𝓕.timeOrderRel φs
@[simp]
lemma timeOrderSign_nil : timeOrderSign (𝓕 := 𝓕) [] = 1 := by
simp only [timeOrderSign]
rfl
lemma timeOrderSign_pair_ordered {φ ψ : 𝓕.States} (h : timeOrderRel φ ψ) :
timeOrderSign [φ, ψ] = 1 := by
simp only [timeOrderSign, Wick.koszulSign, Wick.koszulSignInsert, mul_one, ite_eq_left_iff,
ite_eq_right_iff, and_imp]
exact fun h' => False.elim (h' h)
lemma timeOrderSign_pair_not_ordered {φ ψ : 𝓕.States} (h : ¬ timeOrderRel φ ψ) :
timeOrderSign [φ, ψ] = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) := by
simp only [timeOrderSign, Wick.koszulSign, Wick.koszulSignInsert, mul_one, instCommGroup.eq_1]
rw [if_neg h]
simp [FieldStatistic.exchangeSign_eq_if]
lemma timerOrderSign_of_eraseMaxTimeField (φ : 𝓕.States) (φs : List 𝓕.States) :
timeOrderSign (eraseMaxTimeField φ φs) = timeOrderSign (φ :: φs) *
𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ (φ :: φs).take (maxTimeFieldPos φ φs)) := by
rw [eraseMaxTimeField, insertionSortDropMinPos, timeOrderSign,
Wick.koszulSign_eraseIdx_insertionSortMinPos]
rw [← timeOrderSign, ← maxTimeField]
rfl
/-- The time ordering of a list of states. A schematic example is:
- `normalOrderList [φ1(t = 4), φ2(t = 5), φ3(t = 3), φ4(t = 5)]` is equal to
`[φ2(t = 5), φ4(t = 5), φ1(t = 4), φ3(t = 3)]` -/
def timeOrderList (φs : List 𝓕.States) : List 𝓕.States :=
List.insertionSort 𝓕.timeOrderRel φs
lemma timeOrderList_pair_ordered {φ ψ : 𝓕.States} (h : timeOrderRel φ ψ) :
timeOrderList [φ, ψ] = [φ, ψ] := by
simp only [timeOrderList, List.insertionSort, List.orderedInsert, ite_eq_left_iff,
List.cons.injEq, and_true]
exact fun h' => False.elim (h' h)
lemma timeOrderList_pair_not_ordered {φ ψ : 𝓕.States} (h : ¬ timeOrderRel φ ψ) :
timeOrderList [φ, ψ] = [ψ, φ] := by
simp only [timeOrderList, List.insertionSort, List.orderedInsert, ite_eq_right_iff,
List.cons.injEq, and_true]
exact fun h' => False.elim (h h')
@[simp]
lemma timeOrderList_nil : timeOrderList (𝓕 := 𝓕) [] = [] := by
simp [timeOrderList]
lemma timeOrderList_eq_maxTimeField_timeOrderList (φ : 𝓕.States) (φs : List 𝓕.States) :
timeOrderList (φ :: φs) = maxTimeField φ φs :: timeOrderList (eraseMaxTimeField φ φs) := by
exact insertionSort_eq_insertionSortMin_cons timeOrderRel φ φs
/-!
## Time ordering for CrAnStates
-/
/-!
## timeOrderRel
-/
/-- The time ordering relation on CrAnStates. -/
def crAnTimeOrderRel (a b : 𝓕.CrAnStates) : Prop := 𝓕.timeOrderRel a.1 b.1
/-- The relation `crAnTimeOrderRel` is decidable, but not computablly so due to
`Real.decidableLE`. -/
noncomputable instance (φ φ' : 𝓕.CrAnStates) : Decidable (crAnTimeOrderRel φ φ') :=
inferInstanceAs (Decidable (𝓕.timeOrderRel φ.1 φ'.1))
/-- Time ordering of `CrAnStates` is total. -/
instance : IsTotal 𝓕.CrAnStates 𝓕.crAnTimeOrderRel where
total a b := IsTotal.total (r := 𝓕.timeOrderRel) a.1 b.1
2025-01-27 11:26:02 +00:00
/-- Time ordering of `CrAnStates` is transitive. -/
instance : IsTrans 𝓕.CrAnStates 𝓕.crAnTimeOrderRel where
trans a b c := IsTrans.trans (r := 𝓕.timeOrderRel) a.1 b.1 c.1
2025-01-27 16:13:54 +00:00
@[simp]
lemma crAnTimeOrderRel_refl (φ : 𝓕.CrAnStates) : crAnTimeOrderRel φ φ := by
exact (IsTotal.to_isRefl (r := 𝓕.crAnTimeOrderRel)).refl φ
/-- The sign associated with putting a list of `CrAnStates` into time order (with
the state of greatest time to the left).
We pick up a minus sign for every fermion paired crossed. -/
def crAnTimeOrderSign (φs : List 𝓕.CrAnStates) : :=
Wick.koszulSign 𝓕.crAnStatistics 𝓕.crAnTimeOrderRel φs
@[simp]
lemma crAnTimeOrderSign_nil : crAnTimeOrderSign (𝓕 := 𝓕) [] = 1 := by
simp only [crAnTimeOrderSign]
rfl
2025-01-27 16:13:54 +00:00
lemma crAnTimeOrderSign_pair_ordered {φ ψ : 𝓕.CrAnStates} (h : crAnTimeOrderRel φ ψ) :
crAnTimeOrderSign [φ, ψ] = 1 := by
simp only [crAnTimeOrderSign, Wick.koszulSign, Wick.koszulSignInsert, mul_one, ite_eq_left_iff,
ite_eq_right_iff, and_imp]
exact fun h' => False.elim (h' h)
lemma crAnTimeOrderSign_pair_not_ordered {φ ψ : 𝓕.CrAnStates} (h : ¬ crAnTimeOrderRel φ ψ) :
crAnTimeOrderSign [φ, ψ] = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) := by
simp only [crAnTimeOrderSign, Wick.koszulSign, Wick.koszulSignInsert, mul_one, instCommGroup.eq_1]
rw [if_neg h]
simp [FieldStatistic.exchangeSign_eq_if]
lemma crAnTimeOrderSign_swap_eq_time {φ ψ : 𝓕.CrAnStates}
2025-01-28 16:56:20 +00:00
(h1 : crAnTimeOrderRel φ ψ) (h2 : crAnTimeOrderRel ψ φ) (φs φs' : List 𝓕.CrAnStates) :
crAnTimeOrderSign (φs ++ φ :: ψ :: φs') = crAnTimeOrderSign (φs ++ ψ :: φ :: φs') := by
exact Wick.koszulSign_swap_eq_rel _ _ h1 h2 _ _
2025-01-27 16:13:54 +00:00
/-- Sort a list of `CrAnStates` based on `crAnTimeOrderRel`. -/
def crAnTimeOrderList (φs : List 𝓕.CrAnStates) : List 𝓕.CrAnStates :=
List.insertionSort 𝓕.crAnTimeOrderRel φs
@[simp]
lemma crAnTimeOrderList_nil : crAnTimeOrderList (𝓕 := 𝓕) [] = [] := by
simp [crAnTimeOrderList]
2025-01-27 16:13:54 +00:00
lemma crAnTimeOrderList_pair_ordered {φ ψ : 𝓕.CrAnStates} (h : crAnTimeOrderRel φ ψ) :
crAnTimeOrderList [φ, ψ] = [φ, ψ] := by
simp only [crAnTimeOrderList, List.insertionSort, List.orderedInsert, ite_eq_left_iff,
List.cons.injEq, and_true]
exact fun h' => False.elim (h' h)
lemma crAnTimeOrderList_pair_not_ordered {φ ψ : 𝓕.CrAnStates} (h : ¬ crAnTimeOrderRel φ ψ) :
crAnTimeOrderList [φ, ψ] = [ψ, φ] := by
simp only [crAnTimeOrderList, List.insertionSort, List.orderedInsert, ite_eq_right_iff,
List.cons.injEq, and_true]
exact fun h' => False.elim (h h')
lemma orderedInsert_swap_eq_time {φ ψ : 𝓕.CrAnStates}
(h1 : crAnTimeOrderRel φ ψ) (h2 : crAnTimeOrderRel ψ φ) (φs : List 𝓕.CrAnStates) :
List.orderedInsert crAnTimeOrderRel φ (List.orderedInsert crAnTimeOrderRel ψ φs) =
List.takeWhile (fun b => ¬ crAnTimeOrderRel ψ b) φs ++ φ :: ψ ::
List.dropWhile (fun b => ¬ crAnTimeOrderRel ψ b) φs := by
rw [List.orderedInsert_eq_take_drop crAnTimeOrderRel ψ φs]
simp only [decide_not]
rw [List.orderedInsert_eq_take_drop]
simp only [decide_not]
have h1 (b : 𝓕.CrAnStates) : (crAnTimeOrderRel φ b) ↔ (crAnTimeOrderRel ψ b) :=
Iff.intro (fun h => IsTrans.trans _ _ _ h2 h) (fun h => IsTrans.trans _ _ _ h1 h)
simp only [h1]
rw [List.takeWhile_append]
rw [List.takeWhile_takeWhile]
simp only [Bool.not_eq_eq_eq_not, Bool.not_true, decide_eq_false_iff_not, and_self, decide_not,
↓reduceIte, crAnTimeOrderRel_refl, decide_true, Bool.false_eq_true, not_false_eq_true,
List.takeWhile_cons_of_neg, List.append_nil, List.append_cancel_left_eq, List.cons.injEq,
true_and]
rw [List.dropWhile_append]
simp only [List.isEmpty_eq_true, List.dropWhile_eq_nil_iff, Bool.not_eq_eq_eq_not, Bool.not_true,
decide_eq_false_iff_not, crAnTimeOrderRel_refl, decide_true, Bool.false_eq_true,
not_false_eq_true, List.dropWhile_cons_of_neg, ite_eq_left_iff, not_forall, Classical.not_imp,
Decidable.not_not, List.append_left_eq_self, forall_exists_index, and_imp]
intro x hx hxψ
intro y hy
simpa using List.mem_takeWhile_imp hy
lemma orderedInsert_in_swap_eq_time {φ ψ φ': 𝓕.CrAnStates} (h1 : crAnTimeOrderRel φ ψ)
(h2 : crAnTimeOrderRel ψ φ) : (φs φs' : List 𝓕.CrAnStates) → ∃ l1 l2,
List.orderedInsert crAnTimeOrderRel φ' (φs ++ φ :: ψ :: φs') = l1 ++ φ :: ψ :: l2 ∧
List.orderedInsert crAnTimeOrderRel φ' (φs ++ ψ :: φ :: φs') = l1 ++ ψ :: φ :: l2
| [], φs' => by
have h1 (b : 𝓕.CrAnStates) : (crAnTimeOrderRel b φ) ↔ (crAnTimeOrderRel b ψ) :=
Iff.intro (fun h => IsTrans.trans _ _ _ h h1) (fun h => IsTrans.trans _ _ _ h h2)
by_cases h : crAnTimeOrderRel φ' φ
· simp only [List.orderedInsert, h, ↓reduceIte, ← h1 φ']
use [φ'], φs'
simp
· simp only [List.orderedInsert, h, ↓reduceIte, ← h1 φ']
use [], List.orderedInsert crAnTimeOrderRel φ' φs'
simp
| φ'' :: φs, φs' => by
obtain ⟨l1, l2, hl⟩ := orderedInsert_in_swap_eq_time (φ' := φ') h1 h2 φs φs'
simp only [List.orderedInsert, List.append_eq]
rw [hl.1, hl.2]
by_cases h : crAnTimeOrderRel φ' φ''
· simp only [h, ↓reduceIte]
use (φ' :: φ'' :: φs), φs'
simp
· simp only [h, ↓reduceIte]
use (φ'' :: l1), l2
simp
lemma crAnTimeOrderList_swap_eq_time {φ ψ : 𝓕.CrAnStates}
(h1 : crAnTimeOrderRel φ ψ) (h2 : crAnTimeOrderRel ψ φ) :
(φs φs' : List 𝓕.CrAnStates) →
∃ (l1 l2 : List 𝓕.CrAnStates),
crAnTimeOrderList (φs ++ φ :: ψ :: φs') = l1 ++ φ :: ψ :: l2 ∧
crAnTimeOrderList (φs ++ ψ :: φ :: φs') = l1 ++ ψ :: φ :: l2
| [], φs' => by
simp only [crAnTimeOrderList]
simp only [List.insertionSort]
use List.takeWhile (fun b => ¬ crAnTimeOrderRel ψ b) (List.insertionSort crAnTimeOrderRel φs'),
List.dropWhile (fun b => ¬ crAnTimeOrderRel ψ b) (List.insertionSort crAnTimeOrderRel φs')
apply And.intro
· exact orderedInsert_swap_eq_time h1 h2 _
· have h1' (b : 𝓕.CrAnStates) : (crAnTimeOrderRel φ b) ↔ (crAnTimeOrderRel ψ b) :=
Iff.intro (fun h => IsTrans.trans _ _ _ h2 h) (fun h => IsTrans.trans _ _ _ h1 h)
simp only [← h1', decide_not]
simpa using orderedInsert_swap_eq_time h2 h1 _
| φ'' :: φs, φs' => by
rw [crAnTimeOrderList, crAnTimeOrderList]
simp only [List.insertionSort, List.append_eq]
obtain ⟨l1, l2, hl⟩ := crAnTimeOrderList_swap_eq_time h1 h2 φs φs'
simp only [crAnTimeOrderList] at hl
rw [hl.1, hl.2]
obtain ⟨l1', l2', hl'⟩ := orderedInsert_in_swap_eq_time (φ' := φ'') h1 h2 l1 l2
rw [hl'.1, hl'.2]
use l1', l2'
/-!
## Relationship to sections
-/
lemma koszulSignInsert_crAnTimeOrderRel_crAnSection {φ : 𝓕.States} {ψ : 𝓕.CrAnStates}
(h : ψ.1 = φ) : {φs : List 𝓕.States} → (ψs : CrAnSection φs) →
Wick.koszulSignInsert 𝓕.crAnStatistics 𝓕.crAnTimeOrderRel ψ ψs.1 =
Wick.koszulSignInsert 𝓕.statesStatistic 𝓕.timeOrderRel φ φs
| [], ⟨[], h⟩ => by
simp [Wick.koszulSignInsert]
| φ' :: φs, ⟨ψ' :: ψs, h1⟩ => by
2025-01-27 11:26:02 +00:00
simp only [Wick.koszulSignInsert, crAnTimeOrderRel, h]
simp only [List.map_cons, List.cons.injEq] at h1
have hi := koszulSignInsert_crAnTimeOrderRel_crAnSection h (φs := φs) ⟨ψs, h1.2⟩
rw [hi]
congr
· exact h1.1
2025-01-27 11:26:02 +00:00
· simp only [crAnStatistics, crAnStatesToStates, Function.comp_apply]
congr
2025-01-27 11:26:02 +00:00
· simp only [crAnStatistics, crAnStatesToStates, Function.comp_apply]
congr
exact h1.1
@[simp]
lemma crAnTimeOrderSign_crAnSection : {φs : List 𝓕.States} → (ψs : CrAnSection φs) →
crAnTimeOrderSign ψs.1 = timeOrderSign φs
| [], ⟨[], h⟩ => by
simp
| φ :: φs, ⟨ψ :: ψs, h⟩ => by
simp only [crAnTimeOrderSign, Wick.koszulSign, timeOrderSign]
simp only [List.map_cons, List.cons.injEq] at h
congr 1
· rw [koszulSignInsert_crAnTimeOrderRel_crAnSection h.1 ⟨ψs, h.2⟩]
· exact crAnTimeOrderSign_crAnSection ⟨ψs, h.2⟩
lemma orderedInsert_crAnTimeOrderRel_crAnSection {φ : 𝓕.States} {ψ : 𝓕.CrAnStates}
(h : ψ.1 = φ) : {φs : List 𝓕.States} → (ψs : CrAnSection φs) →
2025-01-27 11:26:02 +00:00
(List.orderedInsert 𝓕.crAnTimeOrderRel ψ ψs.1).map 𝓕.crAnStatesToStates =
List.orderedInsert 𝓕.timeOrderRel φ φs
| [], ⟨[], _⟩ => by
2025-01-27 11:26:02 +00:00
simp only [List.orderedInsert, List.map_cons, List.map_nil, List.cons.injEq, and_true]
exact h
| φ' :: φs, ⟨ψ' :: ψs, h1⟩ => by
2025-01-27 11:26:02 +00:00
simp only [List.orderedInsert, crAnTimeOrderRel, h]
simp only [List.map_cons, List.cons.injEq] at h1
by_cases hr : timeOrderRel φ φ'
2025-01-27 11:26:02 +00:00
· simp only [hr, ↓reduceIte]
rw [← h1.1] at hr
2025-01-27 11:26:02 +00:00
simp only [crAnStatesToStates] at hr
simp only [hr, ↓reduceIte, List.map_cons, List.cons.injEq]
exact And.intro h (And.intro h1.1 h1.2)
2025-01-27 11:26:02 +00:00
· simp only [hr, ↓reduceIte]
rw [← h1.1] at hr
2025-01-27 11:26:02 +00:00
simp only [crAnStatesToStates] at hr
simp only [hr, ↓reduceIte, List.map_cons, List.cons.injEq]
apply And.intro h1.1
exact orderedInsert_crAnTimeOrderRel_crAnSection h ⟨ψs, h1.2⟩
lemma crAnTimeOrderList_crAnSection_is_crAnSection : {φs : List 𝓕.States} → (ψs : CrAnSection φs) →
(crAnTimeOrderList ψs.1).map 𝓕.crAnStatesToStates = timeOrderList φs
| [], ⟨[], h⟩ => by
simp
| φ :: φs, ⟨ψ :: ψs, h⟩ => by
2025-01-27 11:26:02 +00:00
simp only [crAnTimeOrderList, List.insertionSort, timeOrderList]
simp only [List.map_cons, List.cons.injEq] at h
exact orderedInsert_crAnTimeOrderRel_crAnSection h.1 ⟨(List.insertionSort crAnTimeOrderRel ψs),
crAnTimeOrderList_crAnSection_is_crAnSection ⟨ψs, h.2⟩⟩
2025-01-27 11:26:02 +00:00
/-- Time ordering of sections of a list of states. -/
def crAnSectionTimeOrder (φs : List 𝓕.States) (ψs : CrAnSection φs) :
CrAnSection (timeOrderList φs) :=
⟨crAnTimeOrderList ψs.1, crAnTimeOrderList_crAnSection_is_crAnSection ψs⟩
lemma orderedInsert_crAnTimeOrderRel_injective {ψ ψ' : 𝓕.CrAnStates} (h : ψ.1 = ψ'.1) :
2025-01-27 11:26:02 +00:00
{φs : List 𝓕.States} → (ψs ψs' : 𝓕.CrAnSection φs) →
(ho : List.orderedInsert crAnTimeOrderRel ψ ψs.1 =
List.orderedInsert crAnTimeOrderRel ψ' ψs'.1) → ψ = ψ' ∧ ψs = ψs'
| [], ⟨[], _⟩, ⟨[], _⟩, h => by
2025-01-27 11:26:02 +00:00
simp only [List.orderedInsert, List.cons.injEq, and_true] at h
simpa using h
| φ :: φs, ⟨ψ1 :: ψs, h1⟩, ⟨ψ1' :: ψs', h1'⟩, ho => by
2025-01-27 11:26:02 +00:00
simp only [List.map_cons, List.cons.injEq] at h1 h1'
have ih := orderedInsert_crAnTimeOrderRel_injective h ⟨ψs, h1.2⟩ ⟨ψs', h1'.2⟩
2025-01-27 11:26:02 +00:00
simp only [List.orderedInsert] at ho
by_cases hr : crAnTimeOrderRel ψ ψ1
2025-01-27 11:26:02 +00:00
· simp_all only [ite_true]
by_cases hr2 : crAnTimeOrderRel ψ' ψ1'
· simp_all
2025-01-27 11:26:02 +00:00
· simp only [crAnTimeOrderRel] at hr hr2
simp_all only
rw [crAnStatesToStates] at h1 h1'
rw [h1.1] at hr
rw [h1'.1] at hr2
exact False.elim (hr2 hr)
2025-01-27 11:26:02 +00:00
· simp_all only [ite_false]
by_cases hr2 : crAnTimeOrderRel ψ' ψ1'
2025-01-27 11:26:02 +00:00
· simp only [crAnTimeOrderRel] at hr hr2
simp_all only
rw [crAnStatesToStates] at h1 h1'
rw [h1.1] at hr
rw [h1'.1] at hr2
exact False.elim (hr hr2)
2025-01-27 11:26:02 +00:00
· simp only [hr2, ↓reduceIte, List.cons.injEq] at ho
have ih' := ih ho.2
2025-01-27 11:26:02 +00:00
simp_all only [and_self, implies_true, not_false_eq_true, true_and]
apply Subtype.ext
2025-01-27 11:26:02 +00:00
simp only [List.cons.injEq, true_and]
rw [Subtype.eq_iff] at ih'
exact ih'.2
2025-01-27 11:26:02 +00:00
lemma crAnSectionTimeOrder_injective : {φs : List 𝓕.States} →
Function.Injective (𝓕.crAnSectionTimeOrder φs)
| [], ⟨[], _⟩, ⟨[], _⟩ => by
simp
| φ :: φs, ⟨ψ :: ψs, h⟩, ⟨ψ' :: ψs', h'⟩ => by
intro h1
apply Subtype.ext
2025-01-27 11:26:02 +00:00
simp only [List.cons.injEq]
simp only [crAnSectionTimeOrder] at h1
rw [Subtype.eq_iff] at h1
2025-01-27 11:26:02 +00:00
simp only [crAnTimeOrderList, List.insertionSort] at h1
simp only [List.map_cons, List.cons.injEq] at h h'
rw [crAnStatesToStates] at h h'
have hin := orderedInsert_crAnTimeOrderRel_injective (by rw [h.1, h'.1])
(𝓕.crAnSectionTimeOrder φs ⟨ψs, h.2⟩)
(𝓕.crAnSectionTimeOrder φs ⟨ψs', h'.2⟩) h1
apply And.intro hin.1
have hl := crAnSectionTimeOrder_injective hin.2
rw [Subtype.ext_iff] at hl
simpa using hl
lemma crAnSectionTimeOrder_bijective (φs : List 𝓕.States) :
Function.Bijective (𝓕.crAnSectionTimeOrder φs) := by
rw [Fintype.bijective_iff_injective_and_card]
apply And.intro crAnSectionTimeOrder_injective
apply CrAnSection.card_perm_eq
2025-01-27 11:26:02 +00:00
simp only [timeOrderList]
exact List.Perm.symm (List.perm_insertionSort timeOrderRel φs)
lemma sum_crAnSections_timeOrder {φs : List 𝓕.States} [AddCommMonoid M]
(f : CrAnSection (timeOrderList φs) → M) : ∑ s, f s = ∑ s, f (𝓕.crAnSectionTimeOrder φs s) := by
erw [(Equiv.ofBijective _ (𝓕.crAnSectionTimeOrder_bijective φs)).sum_comp]
/-!
## normTimeOrderRel
-/
/-- The time ordering relation on `CrAnStates` such that if two CrAnStates have the same
time, we normal order them. -/
def normTimeOrderRel (a b : 𝓕.CrAnStates) : Prop :=
crAnTimeOrderRel a b ∧ (crAnTimeOrderRel b a → normalOrderRel a b)
/-- The relation `normTimeOrderRel` is decidable, but not computablly so due to
`Real.decidableLE`. -/
noncomputable instance (φ φ' : 𝓕.CrAnStates) : Decidable (normTimeOrderRel φ φ') :=
instDecidableAnd
/-- Norm-Time ordering of `CrAnStates` is total. -/
instance : IsTotal 𝓕.CrAnStates 𝓕.normTimeOrderRel where
total a b := by
simp only [normTimeOrderRel]
match IsTotal.total (r := 𝓕.crAnTimeOrderRel) a b,
2025-01-27 11:26:02 +00:00
IsTotal.total (r := 𝓕.normalOrderRel) a b with
| Or.inl h1, Or.inl h2 => simp [h1, h2]
2025-01-27 11:26:02 +00:00
| Or.inr h1, Or.inl h2 =>
simp only [h1, h2, imp_self, and_true, true_and]
by_cases hn : crAnTimeOrderRel a b
· simp [hn]
· simp [hn]
| Or.inl h1, Or.inr h2 =>
2025-01-27 11:26:02 +00:00
simp only [h1, true_and, h2, imp_self, and_true]
by_cases hn : crAnTimeOrderRel b a
· simp [hn]
· simp [hn]
| Or.inr h1, Or.inr h2 => simp [h1, h2]
/-- Norm-Time ordering of `CrAnStates` is transitive. -/
instance : IsTrans 𝓕.CrAnStates 𝓕.normTimeOrderRel where
trans a b c := by
intro h1 h2
2025-01-27 11:26:02 +00:00
simp_all only [normTimeOrderRel]
apply And.intro
· exact IsTrans.trans _ _ _ h1.1 h2.1
· intro hc
refine IsTrans.trans _ _ _ (h1.2 ?_) (h2.2 ?_)
· exact IsTrans.trans _ _ _ h2.1 hc
· exact IsTrans.trans _ _ _ hc h1.1
/-- The sign associated with putting a list of `CrAnStates` into normal-time order (with
the state of greatest time to the left).
We pick up a minus sign for every fermion paired crossed. -/
def normTimeOrderSign (φs : List 𝓕.CrAnStates) : :=
Wick.koszulSign 𝓕.crAnStatistics 𝓕.normTimeOrderRel φs
/-- Sort a list of `CrAnStates` based on `normTimeOrderRel`. -/
def normTimeOrderList (φs : List 𝓕.CrAnStates) : List 𝓕.CrAnStates :=
List.insertionSort 𝓕.normTimeOrderRel φs
end
end FieldSpecification