PhysLean/HepLean/PerturbationTheory/FieldOpAlgebra/WickTerm.lean

233 lines
10 KiB
Text
Raw Normal View History

2025-02-05 08:52:14 +00:00
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.Sign.Basic
import HepLean.PerturbationTheory.WickContraction.Sign.InsertNone
import HepLean.PerturbationTheory.WickContraction.Sign.InsertSome
import HepLean.PerturbationTheory.WickContraction.TimeContract
import HepLean.PerturbationTheory.FieldOpAlgebra.NormalOrder.WickContractions
/-!
# Wick term
-/
open FieldSpecification
variable {𝓕 : FieldSpecification}
namespace WickContraction
variable {n : } (c : WickContraction n)
open HepLean.List
open FieldOpAlgebra
open FieldStatistic
noncomputable section
2025-02-07 09:56:37 +00:00
/-- For a list `φs` of `𝓕.FieldOp`, and a Wick contraction `φsΛ` of `φs`, the element
of `𝓕.FieldOpAlgebra`, `φsΛ.wickTerm` is defined as
`φsΛ.sign • φsΛ.timeContract * 𝓝([φsΛ]ᵘᶜ)`.
This is term which appears in the Wick's theorem. -/
2025-02-05 08:52:14 +00:00
def wickTerm {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : 𝓕.FieldOpAlgebra :=
φsΛ.sign • φsΛ.timeContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)
/-- For the empty list `[]` of `𝓕.FieldOp`, the `wickTerm` of the Wick contraction
corresponding to the empty set `∅` (the only Wick contraction of `[]`) is `1`. -/
2025-02-05 10:01:48 +00:00
@[simp]
2025-02-06 13:31:59 +00:00
lemma wickTerm_empty_nil :
2025-02-05 10:01:48 +00:00
wickTerm (empty (n := ([] : List 𝓕.FieldOp).length)) = 1 := by
rw [wickTerm]
simp [sign_empty]
2025-02-05 08:52:14 +00:00
/--
2025-02-07 09:56:37 +00:00
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
`𝓕.FieldOp`, and `i ≤ φs.length` the following relation holds
`(φsΛ ↩Λ φ i none).wickTerm = 𝓢(φ, φ₀…φᵢ₋₁) φsΛ.sign • φsΛ.timeContract * 𝓝(φ :: [φsΛ]ᵘᶜ)`
2025-02-05 08:52:14 +00:00
The proof of this result relies on
- `normalOrder_uncontracted_none` to rewrite normal orderings.
- `timeContract_insert_none` to rewrite the time contract.
- `sign_insert_none` to rewrite the sign.
2025-02-05 08:52:14 +00:00
-/
2025-02-05 10:01:48 +00:00
lemma wickTerm_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
2025-02-05 08:52:14 +00:00
(i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) :
(φsΛ ↩Λ φ i none).wickTerm =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun k => i.succAbove k < i))⟩)
• (φsΛ.sign • φsΛ.timeContract * 𝓝(ofFieldOpList (φ :: [φsΛ]ᵘᶜ))) := by
rw [wickTerm]
by_cases hg : GradingCompliant φs φsΛ
2025-02-06 13:31:59 +00:00
· rw [normalOrder_uncontracted_none, sign_insert_none _ _ _ _ hg]
simp only [Nat.succ_eq_add_one, timeContract_insert_none, instCommGroup.eq_1,
2025-02-05 08:52:14 +00:00
Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_smul]
congr 1
rw [← mul_assoc]
congr 1
2025-02-05 10:01:48 +00:00
rw [← map_mul]
2025-02-05 08:52:14 +00:00
congr
rw [ofFinset_union]
congr
ext a
simp only [Finset.mem_sdiff, Finset.mem_union, Finset.mem_filter, Finset.mem_univ, true_and,
Finset.mem_inter, not_and, not_lt, and_imp]
apply Iff.intro
· intro ha
have ha1 := ha.1
rcases ha1 with ha1 | ha1
· exact ha1.2
· exact ha1.2
· intro ha
simp only [uncontracted, Finset.mem_filter, Finset.mem_univ, true_and, ha, and_true,
forall_const]
have hx : φsΛ.getDual? a = none ↔ ¬ (φsΛ.getDual? a).isSome := by
simp
rw [hx]
simp only [Bool.not_eq_true, Bool.eq_false_or_eq_true_self, true_and]
intro h1 h2
simp_all
· simp only [Nat.succ_eq_add_one, timeContract_insert_none, Algebra.smul_mul_assoc,
2025-02-05 08:52:14 +00:00
instCommGroup.eq_1]
rw [timeContract_of_not_gradingCompliant]
simp only [ZeroMemClass.coe_zero, zero_mul, smul_zero]
exact hg
2025-02-07 09:56:37 +00:00
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
`𝓕.FieldOp`, `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`,
such that all `𝓕.FieldOp` in `φ₀…φᵢ₋₁` have time strictly less then `φ` and
2025-02-07 09:56:37 +00:00
`φ` has a time greater then or equal to all `FieldOp` in `φ₀…φₙ`, then
`(φsΛ ↩Λ φ i (some k)).staticWickTerm`
is equal the product of
- the sign `𝓢(φ, φ₀…φᵢ₋₁) `
- the sign `φsΛ.sign`
- `φsΛ.timeContract`
- `s • [anPart φ, ofFieldOp φs[k]]ₛ` where `s` is the sign associated with moving `φ` through
uncontracted fields in `φ₀…φₖ₋₁`
2025-02-10 10:51:44 +00:00
- the normal ordering `[φsΛ]ᵘᶜ` with the field corresponding to `k` removed.
The proof of this result relies on
- `timeContract_insert_some_of_not_lt`
2025-02-06 13:31:59 +00:00
and `timeContract_insert_some_of_lt` to rewrite time
contractions.
- `normalOrder_uncontracted_some` to rewrite normal orderings.
- `sign_insert_some_of_not_lt` and `sign_insert_some_of_lt` to rewrite signs.
2025-02-05 08:52:14 +00:00
-/
2025-02-05 10:01:48 +00:00
lemma wickTerm_insert_some (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
2025-02-05 08:52:14 +00:00
(i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) (k : φsΛ.uncontracted)
(hlt : ∀ (k : Fin φs.length), timeOrderRel φ φs[k])
(hn : ∀ (k : Fin φs.length), i.succAbove k < i → ¬ timeOrderRel φs[k] φ) :
(φsΛ ↩Λ φ i (some k)).wickTerm =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun x => i.succAbove x < i))⟩)
• (φsΛ.sign • (contractStateAtIndex φ [φsΛ]ᵘᶜ
((uncontractedFieldOpEquiv φs φsΛ) (some k)) * φsΛ.timeContract)
* 𝓝(ofFieldOpList (optionEraseZ [φsΛ]ᵘᶜ φ (uncontractedFieldOpEquiv φs φsΛ k)))) := by
rw [wickTerm]
by_cases hg : GradingCompliant φs φsΛ ∧ (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[k.1])
· by_cases hk : i.succAbove k < i
· rw [WickContraction.timeContract_insert_some_of_not_lt]
2025-02-05 08:52:14 +00:00
swap
· exact hn _ hk
2025-02-05 10:01:48 +00:00
· rw [normalOrder_uncontracted_some, sign_insert_some_of_lt φ φs φsΛ i k hk hg]
simp only [instCommGroup.eq_1, smul_smul, Algebra.smul_mul_assoc]
congr 1
rw [mul_assoc, mul_assoc, mul_comm, mul_assoc, mul_assoc]
simp
2025-02-05 08:52:14 +00:00
· omega
· have hik : i.succAbove ↑k ≠ i := Fin.succAbove_ne i ↑k
rw [timeContract_insert_some_of_lt]
2025-02-05 08:52:14 +00:00
swap
· exact hlt _
2025-02-05 10:01:48 +00:00
· rw [normalOrder_uncontracted_some]
rw [sign_insert_some_of_not_lt φ φs φsΛ i k hk hg]
simp only [instCommGroup.eq_1, smul_smul, Algebra.smul_mul_assoc]
congr 1
rw [mul_assoc, mul_assoc, mul_comm, mul_assoc, mul_assoc]
simp
2025-02-05 08:52:14 +00:00
· omega
2025-02-05 10:04:41 +00:00
· rw [timeContract_insertAndContract_some]
2025-02-05 08:52:14 +00:00
simp only [Fin.getElem_fin, not_and] at hg
by_cases hg' : GradingCompliant φs φsΛ
· have hg := hg hg'
simp only [Nat.succ_eq_add_one, Fin.getElem_fin, ite_mul, Algebra.smul_mul_assoc,
instCommGroup.eq_1, contractStateAtIndex, uncontractedFieldOpEquiv, Equiv.optionCongr_apply,
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply, Fin.coe_cast,
List.getElem_map, uncontractedList_getElem_uncontractedIndexEquiv_symm, List.get_eq_getElem,
uncontractedListGet]
by_cases h1 : i < i.succAbove ↑k
· simp only [h1, ↓reduceIte, MulMemClass.coe_mul]
rw [timeContract_zero_of_diff_grade]
simp only [zero_mul, smul_zero]
rw [superCommute_anPart_ofFieldOpF_diff_grade_zero]
simp only [zero_mul, smul_zero]
exact hg
exact hg
· simp only [h1, ↓reduceIte, MulMemClass.coe_mul]
rw [timeContract_zero_of_diff_grade]
simp only [zero_mul, smul_zero]
rw [superCommute_anPart_ofFieldOpF_diff_grade_zero]
simp only [zero_mul, smul_zero]
exact hg
exact fun a => hg (id (Eq.symm a))
· rw [timeContract_of_not_gradingCompliant]
simp only [Nat.succ_eq_add_one, Fin.getElem_fin, mul_zero, ZeroMemClass.coe_zero, smul_zero,
zero_mul, instCommGroup.eq_1]
exact hg'
/--
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
`𝓕.FieldOp`, and `i ≤ φs.length`
such that all `𝓕.FieldOp` in `φ₀…φᵢ₋₁` have time strictly less then `φ` and
`φ` has a time greater then or equal to all `FieldOp` in `φ₀…φₙ`, then
2025-02-07 09:56:37 +00:00
`φ * φsΛ.wickTerm = 𝓢(φ, φ₀…φᵢ₋₁) • ∑ k, (φsΛ ↩Λ φ i k).wickTerm`
2025-02-07 09:56:37 +00:00
where the sum is over all `k` in `Option φsΛ.uncontracted`, so `k` is either `none` or `some k`.
2025-02-05 08:52:14 +00:00
The proof of proceeds as follows:
2025-02-06 13:31:59 +00:00
- `ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum` is used to expand `φ 𝓝([φsΛ]ᵘᶜ)` as
a sum over `k` in `Option φsΛ.uncontracted` of terms involving `[anPart φ, φs[k]]ₛ`.
- Then `wickTerm_insert_none` and `wickTerm_insert_some` are used to equate terms.
2025-02-05 08:52:14 +00:00
-/
2025-02-05 10:01:48 +00:00
lemma mul_wickTerm_eq_sum (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (i : Fin φs.length.succ)
2025-02-05 08:52:14 +00:00
(φsΛ : WickContraction φs.length) (hlt : ∀ (k : Fin φs.length), timeOrderRel φ φs[k])
(hn : ∀ (k : Fin φs.length), i.succAbove k < i → ¬timeOrderRel φs[k] φ) :
ofFieldOp φ * φsΛ.wickTerm =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun x => i.succAbove x < i))⟩) •
∑ (k : Option φsΛ.uncontracted), (φsΛ ↩Λ φ i k).wickTerm := by
trans (φsΛ.sign • φsΛ.timeContract) * ((ofFieldOp φ) * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ))
· have ht := Subalgebra.mem_center_iff.mp (Subalgebra.smul_mem (Subalgebra.center _)
(WickContraction.timeContract φsΛ).2 (φsΛ.sign))
rw [wickTerm]
rw [← mul_assoc, ht, mul_assoc]
rw [ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum, Finset.mul_sum,
uncontractedFieldOpEquiv_list_sum, Finset.smul_sum]
simp only [instCommGroup.eq_1, Nat.succ_eq_add_one]
congr 1
funext n
match n with
| none =>
2025-02-05 10:01:48 +00:00
rw [wickTerm_insert_none]
2025-02-05 08:52:14 +00:00
simp only [contractStateAtIndex, uncontractedFieldOpEquiv, Equiv.optionCongr_apply,
Equiv.coe_trans, Option.map_none', one_mul, Algebra.smul_mul_assoc, instCommGroup.eq_1,
smul_smul]
congr 1
rw [← mul_assoc, exchangeSign_mul_self]
simp
| some n =>
2025-02-05 10:01:48 +00:00
rw [wickTerm_insert_some _ _ _ _ _
2025-02-05 08:52:14 +00:00
(fun k => hlt k) (fun k a => hn k a)]
simp only [uncontractedFieldOpEquiv, Equiv.optionCongr_apply, Equiv.coe_trans, Option.map_some',
Function.comp_apply, finCongr_apply, Algebra.smul_mul_assoc, instCommGroup.eq_1, smul_smul]
congr 1
· rw [← mul_assoc, exchangeSign_mul_self]
rw [one_mul]
· rw [← mul_assoc]
congr 1
have ht := (WickContraction.timeContract φsΛ).prop
rw [@Subalgebra.mem_center_iff] at ht
rw [ht]
end
end WickContraction