PhysLean/HepLean/PerturbationTheory/FieldSpecification/CrAnSection.lean

429 lines
17 KiB
Text
Raw Normal View History

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
2025-02-03 11:28:14 +00:00
import HepLean.PerturbationTheory.FieldSpecification.CrAnFieldOp
/-!
2025-02-07 15:43:59 +00:00
# Creation and annihilation sections
In the module
`HepLean.PerturbationTheory.FieldSpecification.Basic`
we defined states for a field specification, and in the module
2025-02-03 11:28:14 +00:00
`HepLean.PerturbationTheory.FieldStatistics.CrAnFieldOp`
we defined a refinement of states called `CrAnFieldOp` which distinquishes between the
creation and annihilation components of states.
2025-02-03 11:28:14 +00:00
There exists, in particular, a map from `CrAnFieldOp` to `FieldOp` called `crAnFieldOpToFieldOp`.
2025-02-03 11:28:14 +00:00
Given a list of `FieldOp`, `φs`, in this module we define a section of `φs` to be a list of
`CrAnFieldOp`, `ψs`, such that under the map `crAnFieldOpToFieldOp`, `ψs` is mapped to `φs`.
That is to say, the states underlying `ψs` are the states in `φs`.
We denote these sections as `CrAnSection φs`.
Looking forward the main consequence of this definition is the lemma
`FieldSpecification.FieldOpFreeAlgebra.ofFieldOpListF_sum`.
In this module we define various properties of `CrAnSection`.
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
2025-02-03 11:28:14 +00:00
/-- The sections in `𝓕.CrAnFieldOp` over a list `φs : List 𝓕.FieldOp`.
In terms of physics, given some fields `φ₁...φₙ`, the different ways one can associate
each field as a `creation` or an `annilation` operator. E.g. the number of terms
2025-02-07 15:43:59 +00:00
`φ₁⁰φ₂¹...φₙ⁰` `φ₁¹φ₂¹...φₙ⁰` etc. If some fields are exclusively creation or annihilation
operators at this point (e.g. asymptotic states) this is accounted for. -/
2025-02-03 11:28:14 +00:00
def CrAnSection (φs : List 𝓕.FieldOp) : Type :=
{ψs : List 𝓕.CrAnFieldOp // ψs.map 𝓕.crAnFieldOpToFieldOp = φs}
-- Π i, 𝓕.fieldOpToCreateAnnihilateType (φs.get i)
namespace CrAnSection
open FieldStatistic
2025-02-03 11:28:14 +00:00
variable {𝓕 : FieldSpecification} {φs : List 𝓕.FieldOp}
@[simp]
lemma length_eq (ψs : CrAnSection φs) : ψs.1.length = φs.length := by
simpa using congrArg List.length ψs.2
/-- The tail of a section for `φs`. -/
2025-02-03 11:28:14 +00:00
def tail : {φs : List 𝓕.FieldOp} → (ψs : CrAnSection φs) → CrAnSection φs.tail
| [], ⟨[], h⟩ => ⟨[], h⟩
| φ :: φs, ⟨[], h⟩ => False.elim (by simp at h)
| φ :: φs, ⟨ψ :: ψs, h⟩ => ⟨ψs, by rw [List.map_cons, List.cons.injEq] at h; exact h.2⟩
2025-02-03 11:28:14 +00:00
lemma head_state_eq {φ : 𝓕.FieldOp} : (ψs : CrAnSection (φ :: φs)) →
(ψs.1.head (by simp [← List.length_pos_iff_ne_nil])).1 = φ
| ⟨[], h⟩ => False.elim (by simp at h)
| ⟨ψ :: ψs, h⟩ => by
simp only [List.map_cons, List.cons.injEq] at h
exact h.1
lemma statistics_eq_state_statistics (ψs : CrAnSection φs) :
(𝓕 |>ₛ ψs.1) = 𝓕 |>ₛ φs := by
erw [FieldStatistic.ofList_eq_prod, FieldStatistic.ofList_eq_prod, crAnStatistics]
rw [← List.map_comp_map, Function.comp_apply, ψs.2]
lemma take_statistics_eq_take_state_statistics (ψs : CrAnSection φs) n :
(𝓕 |>ₛ (ψs.1.take n)) = 𝓕 |>ₛ (φs.take n) := by
erw [FieldStatistic.ofList_eq_prod, FieldStatistic.ofList_eq_prod, crAnStatistics]
simp only [instCommGroup, List.map_take]
rw [← List.map_comp_map, Function.comp_apply, ψs.2]
2025-02-03 11:28:14 +00:00
/-- The head of a section for `φ :: φs` as an element in `𝓕.fieldOpToCreateAnnihilateType φ`. -/
def head : {φ : 𝓕.FieldOp} → (ψs : CrAnSection (φ :: φs)) →
𝓕.fieldOpToCrAnType φ
| φ, ⟨[], h⟩ => False.elim (by simp at h)
2025-02-03 11:28:14 +00:00
| φ, ⟨ψ :: ψs, h⟩ => 𝓕.fieldOpToCreateAnnihilateTypeCongr (by
simpa using head_state_eq ⟨ψ :: ψs, h⟩) ψ.2
2025-02-03 11:28:14 +00:00
lemma eq_head_cons_tail {φ : 𝓕.FieldOp} {ψs : CrAnSection (φ :: φs)} :
ψs.1 = ⟨φ, head ψs⟩ :: ψs.tail.1 := by
match ψs with
| ⟨[], h⟩ => exact False.elim (by simp at h)
| ⟨ψ :: ψs, h⟩ =>
have h2 := head_state_eq ⟨ψ :: ψs, h⟩
simp only [List.head_cons] at h2
subst h2
rfl
/-- The creation of a section from for `φ : φs` from a section for `φs` and a
2025-02-03 11:28:14 +00:00
element of `𝓕.fieldOpToCreateAnnihilateType φ`. -/
def cons {φ : 𝓕.FieldOp} (ψ : 𝓕.fieldOpToCrAnType φ) (ψs : CrAnSection φs) :
CrAnSection (φ :: φs) := ⟨⟨φ, ψ⟩ :: ψs.1, by
simp [List.map_cons, ψs.2]⟩
/-- For the empty list of states there is only one `CrAnSection`. Corresponding to the
2025-02-03 11:28:14 +00:00
empty list of `CrAnFieldOp`. -/
def nilEquiv : CrAnSection (𝓕 := 𝓕) [] ≃ Unit where
toFun _ := ()
invFun _ := ⟨[], rfl⟩
left_inv ψs := Subtype.ext <| by
have h2 := ψs.2
simp only [List.map_eq_nil_iff] at h2
simp [h2]
right_inv _ := by
simp
2025-02-07 15:43:59 +00:00
/-- The creation and annihilation sections for a singleton list is given by
2025-02-03 11:28:14 +00:00
a choice of `𝓕.fieldOpToCreateAnnihilateType φ`. If `φ` is a asymptotic state
there is no choice here, else there are two choices. -/
2025-02-03 11:28:14 +00:00
def singletonEquiv {φ : 𝓕.FieldOp} : CrAnSection [φ] ≃
𝓕.fieldOpToCrAnType φ where
toFun ψs := ψs.head
invFun ψ := ⟨[⟨φ, ψ⟩], by simp⟩
left_inv ψs := by
apply Subtype.ext
simp only
have h1 := eq_head_cons_tail (ψs := ψs)
rw [h1]
have h2 := ψs.tail.2
simp only [List.tail_cons, List.map_eq_nil_iff] at h2
simp [h2]
right_inv ψ := by
simp only [head]
rfl
2025-02-10 10:51:44 +00:00
/-- An equivalence separating the head of a creation and annihilation section
from the tail. -/
2025-02-03 11:28:14 +00:00
def consEquiv {φ : 𝓕.FieldOp} {φs : List 𝓕.FieldOp} : CrAnSection (φ :: φs) ≃
𝓕.fieldOpToCrAnType φ × CrAnSection φs where
toFun ψs := ⟨ψs.head, ψs.tail⟩
invFun ψψs :=
match ψψs with
| (ψ, ψs) => cons ψ ψs
left_inv ψs := by
apply Subtype.ext
exact Eq.symm eq_head_cons_tail
right_inv ψψs := by
match ψψs with
| (ψ, ψs) => rfl
/-- The instance of a finite type on `CrAnSection`s defined recursively through
`consEquiv`. -/
2025-02-03 11:28:14 +00:00
instance fintype : (φs : List 𝓕.FieldOp) → Fintype (CrAnSection φs)
| [] => Fintype.ofEquiv _ nilEquiv.symm
| _ :: φs =>
haveI : Fintype (CrAnSection φs) := fintype φs
Fintype.ofEquiv _ consEquiv.symm
@[simp]
lemma card_nil_eq : Fintype.card (CrAnSection (𝓕 := 𝓕) []) = 1 := by
rw [Fintype.ofEquiv_card nilEquiv.symm]
simp
2025-02-03 11:28:14 +00:00
lemma card_cons_eq {φ : 𝓕.FieldOp} {φs : List 𝓕.FieldOp} :
Fintype.card (CrAnSection (φ :: φs)) = Fintype.card (𝓕.fieldOpToCrAnType φ) *
Fintype.card (CrAnSection φs) := by
rw [Fintype.ofEquiv_card consEquiv.symm]
simp
2025-02-03 11:28:14 +00:00
lemma card_eq_mul : {φs : List 𝓕.FieldOp} → Fintype.card (CrAnSection φs) =
2 ^ (List.countP 𝓕.statesIsPosition φs)
| [] => by
simp
2025-02-03 11:28:14 +00:00
| FieldOp.position _ :: φs => by
2025-01-27 11:26:02 +00:00
simp only [statesIsPosition, List.countP_cons_of_pos]
rw [card_cons_eq]
rw [card_eq_mul]
2025-02-03 11:28:14 +00:00
simp only [fieldOpToCrAnType, CreateAnnihilate.CreateAnnihilate_card_eq_two]
ring
2025-02-03 11:28:14 +00:00
| FieldOp.inAsymp x_ :: φs => by
2025-01-27 11:26:02 +00:00
simp only [statesIsPosition, Bool.false_eq_true, not_false_eq_true, List.countP_cons_of_neg]
rw [card_cons_eq]
rw [card_eq_mul]
2025-02-03 11:28:14 +00:00
simp [fieldOpToCrAnType]
| FieldOp.outAsymp _ :: φs => by
2025-01-27 11:26:02 +00:00
simp only [statesIsPosition, Bool.false_eq_true, not_false_eq_true, List.countP_cons_of_neg]
rw [card_cons_eq]
rw [card_eq_mul]
2025-02-03 11:28:14 +00:00
simp [fieldOpToCrAnType]
2025-02-03 11:28:14 +00:00
lemma card_perm_eq {φs φs' : List 𝓕.FieldOp} (h : φs.Perm φs') :
Fintype.card (CrAnSection φs) = Fintype.card (CrAnSection φs') := by
rw [card_eq_mul, card_eq_mul]
congr 1
exact List.Perm.countP_congr h fun x => congrFun rfl
@[simp]
lemma sum_nil (f : CrAnSection (𝓕 := 𝓕) [] → M) [AddCommMonoid M] :
∑ (s : CrAnSection []), f s = f ⟨[], rfl⟩ := by
rw [← nilEquiv.symm.sum_comp]
simp only [Finset.univ_unique, PUnit.default_eq_unit, Finset.sum_singleton]
rfl
lemma sum_cons (f : CrAnSection (φ :: φs) → M) [AddCommMonoid M] :
2025-02-03 11:28:14 +00:00
∑ (s : CrAnSection (φ :: φs)), f s = ∑ (a : 𝓕.fieldOpToCrAnType φ),
∑ (s : CrAnSection φs), f (cons a s) := by
rw [← consEquiv.symm.sum_comp, Fintype.sum_prod_type]
rfl
lemma sum_over_length {s : CrAnSection φs} (f : Fin s.1.length → M)
[AddCommMonoid M] : ∑ (n : Fin s.1.length), f n =
∑ (n : Fin φs.length), f (Fin.cast (length_eq s).symm n) := by
rw [← (finCongr (length_eq s)).sum_comp]
rfl
/-- The equivalence between `CrAnSection φs` and
`CrAnSection φs'` induced by an equality `φs = φs'`. -/
2025-02-03 11:28:14 +00:00
def congr : {φs φs' : List 𝓕.FieldOp} → (h : φs = φs') →
CrAnSection φs ≃ CrAnSection φs'
| _, _, rfl => Equiv.refl _
@[simp]
2025-02-03 11:28:14 +00:00
lemma congr_fst {φs φs' : List 𝓕.FieldOp} (h : φs = φs') (ψs : CrAnSection φs) :
(congr h ψs).1 = ψs.1 := by
cases h
rfl
@[simp]
2025-02-03 11:28:14 +00:00
lemma congr_symm {φs φs' : List 𝓕.FieldOp} (h : φs = φs') :
(congr h).symm = congr h.symm := by
cases h
rfl
@[simp]
2025-02-03 11:28:14 +00:00
lemma congr_trans_apply {φs φs' φs'' : List 𝓕.FieldOp} (h1 : φs = φs') (h2 : φs' = φs'')
(ψs : CrAnSection φs) :
(congr h2 (congr h1 ψs)) = congr (by rw [h1, h2]) ψs := by
subst h1 h2
rfl
/-- Returns the first `n` elements of a section and its underlying list. -/
def take (n : ) (ψs : CrAnSection φs) : CrAnSection (φs.take n) :=
⟨ψs.1.take n, by simp [ψs.2]⟩
@[simp]
2025-02-03 11:28:14 +00:00
lemma take_congr {φs φs' : List 𝓕.FieldOp} (h : φs = φs') (n : )
(ψs : CrAnSection φs) :
(take n (congr h ψs)) = congr (by rw [h]) (take n ψs) := by
subst h
rfl
/-- Removes the first `n` elements of a section and its underlying list. -/
def drop (n : ) (ψs : CrAnSection φs) : CrAnSection (φs.drop n) :=
⟨ψs.1.drop n, by simp [ψs.2]⟩
@[simp]
2025-02-03 11:28:14 +00:00
lemma drop_congr {φs φs' : List 𝓕.FieldOp} (h : φs = φs') (n : )
(ψs : CrAnSection φs) :
(drop n (congr h ψs)) = congr (by rw [h]) (drop n ψs) := by
subst h
rfl
/-- Appends two sections and their underlying lists. -/
2025-02-03 11:28:14 +00:00
def append {φs φs' : List 𝓕.FieldOp} (ψs : CrAnSection φs)
(ψs' : CrAnSection φs') : CrAnSection (φs ++ φs') :=
⟨ψs.1 ++ ψs'.1, by simp [ψs.2, ψs'.2]⟩
2025-02-03 11:28:14 +00:00
lemma append_assoc {φs φs' φs'' : List 𝓕.FieldOp} (ψs : CrAnSection φs)
(ψs' : CrAnSection φs') (ψs'' : CrAnSection φs'') :
append ψs (append ψs' ψs'') = congr (by simp) (append (append ψs ψs') ψs'') := by
apply Subtype.ext
simp [append]
2025-02-03 11:28:14 +00:00
lemma append_assoc' {φs φs' φs'' : List 𝓕.FieldOp} (ψs : CrAnSection φs)
(ψs' : CrAnSection φs') (ψs'' : CrAnSection φs'') :
(append (append ψs ψs') ψs'') = congr (by simp) (append ψs (append ψs' ψs'')) := by
apply Subtype.ext
simp [append]
2025-02-03 11:28:14 +00:00
lemma singletonEquiv_append_eq_cons {φs : List 𝓕.FieldOp} {φ : 𝓕.FieldOp}
(ψs : CrAnSection φs) (ψ : 𝓕.fieldOpToCrAnType φ) :
append (singletonEquiv.symm ψ) ψs = cons ψ ψs := by
apply Subtype.ext
simp [append, cons, singletonEquiv]
@[simp]
lemma take_append_drop {n : } (ψs : CrAnSection φs) :
append (take n ψs) (drop n ψs) = congr (List.take_append_drop n φs).symm ψs := by
apply Subtype.ext
simp [take, drop, append]
2025-02-03 11:28:14 +00:00
lemma congr_append {φs1 φs1' φs2 φs2' : List 𝓕.FieldOp} (h1 : φs1 = φs1') (h2 : φs2 = φs2')
(ψs1 : CrAnSection φs1) (ψs2 : CrAnSection φs2) :
(append (congr h1 ψs1) (congr h2 ψs2)) = congr (by rw [h1, h2]) (append ψs1 ψs2) := by
subst h1 h2
rfl
@[simp]
2025-02-03 11:28:14 +00:00
lemma congr_fst_append {φs1 φs1' φs2 : List 𝓕.FieldOp} (h1 : φs1 = φs1')
(ψs1 : CrAnSection φs1) (ψs2 : CrAnSection φs2) :
(append (congr h1 ψs1) (ψs2)) = congr (by rw [h1]) (append ψs1 ψs2) := by
subst h1
rfl
@[simp]
2025-02-03 11:28:14 +00:00
lemma congr_snd_append {φs1 φs2 φs2' : List 𝓕.FieldOp} (h2 : φs2 = φs2')
(ψs1 : CrAnSection φs1) (ψs2 : CrAnSection φs2) :
(append ψs1 (congr h2 ψs2)) = congr (by rw [h2]) (append ψs1 ψs2) := by
subst h2
rfl
@[simp]
2025-02-03 11:28:14 +00:00
lemma take_left {φs φs' : List 𝓕.FieldOp} (ψs : CrAnSection φs)
(ψs' : CrAnSection φs') :
take φs.length (ψs.append ψs') = congr (by simp) ψs := by
apply Subtype.ext
simp [take, append]
@[simp]
2025-02-03 11:28:14 +00:00
lemma drop_left {φs φs' : List 𝓕.FieldOp} (ψs : CrAnSection φs)
(ψs' : CrAnSection φs') :
drop φs.length (ψs.append ψs') = congr (by simp) ψs' := by
apply Subtype.ext
simp [drop, append]
/-- The equivalence between `CrAnSection (φs ++ φs')` and
`CrAnSection φs × CrAnSection φs` formed by `append`, `take`
and `drop` and their interrelationship. -/
2025-02-03 11:28:14 +00:00
def appendEquiv {φs φs' : List 𝓕.FieldOp} : CrAnSection (φs ++ φs') ≃
CrAnSection φs × CrAnSection φs' where
toFun ψs := (congr (List.take_left φs φs') (take φs.length ψs),
congr (List.drop_left φs φs') (drop φs.length ψs))
invFun ψsψs' := append ψsψs'.1 ψsψs'.2
left_inv ψs := by
apply Subtype.ext
simp
right_inv ψsψs' := by
match ψsψs' with
| (ψs, ψs') =>
simp only [take_left, drop_left, Prod.mk.injEq]
refine And.intro (Subtype.ext ?_) (Subtype.ext ?_)
· simp
· simp
@[simp]
lemma _root_.List.map_eraseIdx {α β : Type} (f : α → β) : (l : List α) → (n : ) →
List.map f (l.eraseIdx n) = (List.map f l).eraseIdx n
| [], _ => rfl
| a :: l, 0 => rfl
| a :: l, n+1 => by
simp only [List.eraseIdx, List.map_cons, List.cons.injEq, true_and]
exact List.map_eraseIdx f l n
/-- Erasing an element from a section and it's underlying list. -/
def eraseIdx (n : ) (ψs : CrAnSection φs) : CrAnSection (φs.eraseIdx n) :=
⟨ψs.1.eraseIdx n, by simp [ψs.2]⟩
/-- The equivalence formed by extracting an element from a section. -/
2025-02-03 11:28:14 +00:00
def eraseIdxEquiv (n : ) (φs : List 𝓕.FieldOp) (hn : n < φs.length) :
CrAnSection φs ≃ 𝓕.fieldOpToCrAnType φs[n] ×
CrAnSection (φs.eraseIdx n) :=
(congr (by simp only [List.take_concat_get', List.take_append_drop])).trans <|
appendEquiv.trans <|
(Equiv.prodCongr (appendEquiv.trans (Equiv.prodComm _ _)) (Equiv.refl _)).trans <|
(Equiv.prodAssoc _ _ _).trans <|
Equiv.prodCongr singletonEquiv <|
appendEquiv.symm.trans <|
congr (List.eraseIdx_eq_take_drop_succ φs n).symm
@[simp]
lemma eraseIdxEquiv_apply_snd {n : } (ψs : CrAnSection φs) (hn : n < φs.length) :
(eraseIdxEquiv n φs hn ψs).snd = eraseIdx n ψs := by
apply Subtype.ext
simp only [eraseIdxEquiv, appendEquiv, take, List.take_concat_get', List.length_take, drop,
append, Equiv.trans_apply, Equiv.coe_fn_mk, congr_fst, Equiv.prodCongr_apply, Equiv.coe_trans,
Equiv.coe_prodComm, Equiv.coe_refl, Prod.map_apply, Function.comp_apply, Prod.swap_prod_mk,
id_eq, Equiv.prodAssoc_apply, Equiv.coe_fn_symm_mk, eraseIdx]
rw [Nat.min_eq_left (Nat.le_of_succ_le hn), Nat.min_eq_left hn, List.take_take]
simp only [Nat.succ_eq_add_one, le_add_iff_nonneg_right, zero_le, inf_of_le_left]
exact Eq.symm (List.eraseIdx_eq_take_drop_succ ψs.1 n)
2025-02-03 11:28:14 +00:00
lemma eraseIdxEquiv_symm_eq_take_cons_drop {n : } (φs : List 𝓕.FieldOp) (hn : n < φs.length)
(a : 𝓕.fieldOpToCrAnType φs[n]) (s : CrAnSection (φs.eraseIdx n)) :
(eraseIdxEquiv n φs hn).symm ⟨a, s⟩ =
congr (by
rw [HepLean.List.take_eraseIdx_same, HepLean.List.drop_eraseIdx_succ]
conv_rhs => rw [← List.take_append_drop n φs]) (append (take n s) (cons a (drop n s))) := by
simp only [eraseIdxEquiv, appendEquiv, Equiv.symm_trans_apply, congr_symm, Equiv.prodCongr_symm,
Equiv.refl_symm, Equiv.prodCongr_apply, Prod.map_apply, Equiv.symm_symm, Equiv.coe_fn_mk,
take_congr, congr_trans_apply, drop_congr, Equiv.prodAssoc_symm_apply, Equiv.coe_refl,
Equiv.prodComm_symm, Equiv.prodComm_apply, Prod.swap_prod_mk, Equiv.coe_fn_symm_mk,
congr_fst_append, id_eq, congr_snd_append]
rw [append_assoc', singletonEquiv_append_eq_cons]
simp only [List.singleton_append, congr_trans_apply]
apply Subtype.ext
simp only [congr_fst]
have hn : (List.take n φs).length = n := by
rw [@List.length_take]
simp only [inf_eq_left]
exact Nat.le_of_succ_le hn
rw [hn]
@[simp]
2025-02-03 11:28:14 +00:00
lemma eraseIdxEquiv_symm_getElem {n : } (φs : List 𝓕.FieldOp) (hn : n < φs.length)
(a : 𝓕.fieldOpToCrAnType φs[n]) (s : CrAnSection (φs.eraseIdx n)) :
getElem ((eraseIdxEquiv n φs hn).symm ⟨a,s⟩).1 n
(by rw [length_eq]; exact hn) = ⟨φs[n], a⟩ := by
rw [eraseIdxEquiv_symm_eq_take_cons_drop]
simp only [append, take, cons, drop, congr_fst]
rw [List.getElem_append]
simp only [List.length_take, length_eq, lt_inf_iff, lt_self_iff_false, false_and, ↓reduceDIte]
have h0 : n ⊓ (φs.eraseIdx n).length = n := by
simp only [inf_eq_left]
rw [← HepLean.List.eraseIdx_length _ ⟨n, hn⟩] at hn
exact Nat.le_of_lt_succ hn
simp [h0]
@[simp]
2025-02-03 11:28:14 +00:00
lemma eraseIdxEquiv_symm_eraseIdx {n : } (φs : List 𝓕.FieldOp) (hn : n < φs.length)
(a : 𝓕.fieldOpToCrAnType φs[n]) (s : CrAnSection (φs.eraseIdx n)) :
((eraseIdxEquiv n φs hn).symm ⟨a, s⟩).1.eraseIdx n = s.1 := by
change (((eraseIdxEquiv n φs hn).symm ⟨a, s⟩).eraseIdx n).1 = _
rw [← eraseIdxEquiv_apply_snd _ hn]
simp
2025-02-03 11:28:14 +00:00
lemma sum_eraseIdxEquiv (n : ) (φs : List 𝓕.FieldOp) (hn : n < φs.length)
(f : CrAnSection φs → M) [AddCommMonoid M] : ∑ (s : CrAnSection φs), f s =
2025-02-03 11:28:14 +00:00
∑ (a : 𝓕.fieldOpToCrAnType φs[n]), ∑ (s : CrAnSection (φs.eraseIdx n)),
f ((eraseIdxEquiv n φs hn).symm ⟨a, s⟩) := by
rw [← (eraseIdxEquiv n φs hn).symm.sum_comp]
rw [Fintype.sum_prod_type]
end CrAnSection
end FieldSpecification