2025-01-20 15:17:48 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
2025-01-30 11:00:25 +00:00
|
|
|
|
import HepLean.PerturbationTheory.FieldSpecification.CrAnSection
|
2025-01-27 11:12:48 +00:00
|
|
|
|
import HepLean.PerturbationTheory.FieldSpecification.NormalOrder
|
2025-01-20 15:17:48 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
2025-01-21 06:11:47 +00:00
|
|
|
|
# Time ordering of states
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
2025-01-21 06:11:47 +00:00
|
|
|
|
namespace FieldSpecification
|
|
|
|
|
variable {𝓕 : FieldSpecification}
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-01-27 11:12:48 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Time ordering for states
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
2025-01-20 15:17:48 +00:00
|
|
|
|
/-- The time ordering relation on states. We have that `timeOrderRel φ0 φ1` is true
|
|
|
|
|
if and only if `φ1` has a time less-then or equal to `φ0`, or `φ1` is a negative
|
|
|
|
|
asymptotic state, or `φ0` is a positive asymptotic state. -/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
def timeOrderRel : 𝓕.FieldOp → 𝓕.FieldOp → Prop
|
|
|
|
|
| FieldOp.outAsymp _, _ => True
|
|
|
|
|
| FieldOp.position φ0, FieldOp.position φ1 => φ1.2 0 ≤ φ0.2 0
|
|
|
|
|
| FieldOp.position _, FieldOp.inAsymp _ => True
|
|
|
|
|
| FieldOp.position _, FieldOp.outAsymp _ => False
|
|
|
|
|
| FieldOp.inAsymp _, FieldOp.outAsymp _ => False
|
|
|
|
|
| FieldOp.inAsymp _, FieldOp.position _ => False
|
|
|
|
|
| FieldOp.inAsymp _, FieldOp.inAsymp _ => True
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-02-10 10:51:44 +00:00
|
|
|
|
/-- The relation `timeOrderRel` is decidable, but not computable so due to
|
2025-01-20 15:17:48 +00:00
|
|
|
|
`Real.decidableLE`. -/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
noncomputable instance : (φ φ' : 𝓕.FieldOp) → Decidable (timeOrderRel φ φ')
|
|
|
|
|
| FieldOp.outAsymp _, _ => isTrue True.intro
|
|
|
|
|
| FieldOp.position φ0, FieldOp.position φ1 => inferInstanceAs (Decidable (φ1.2 0 ≤ φ0.2 0))
|
|
|
|
|
| FieldOp.position _, FieldOp.inAsymp _ => isTrue True.intro
|
|
|
|
|
| FieldOp.position _, FieldOp.outAsymp _ => isFalse (fun a => a)
|
|
|
|
|
| FieldOp.inAsymp _, FieldOp.outAsymp _ => isFalse (fun a => a)
|
|
|
|
|
| FieldOp.inAsymp _, FieldOp.position _ => isFalse (fun a => a)
|
|
|
|
|
| FieldOp.inAsymp _, FieldOp.inAsymp _ => isTrue True.intro
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
/-- Time ordering is total. -/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
instance : IsTotal 𝓕.FieldOp 𝓕.timeOrderRel where
|
2025-01-20 15:17:48 +00:00
|
|
|
|
total a b := by
|
|
|
|
|
cases a <;> cases b <;>
|
|
|
|
|
simp only [or_self, or_false, or_true, timeOrderRel, Fin.isValue, implies_true, imp_self,
|
|
|
|
|
IsEmpty.forall_iff]
|
|
|
|
|
exact LinearOrder.le_total _ _
|
|
|
|
|
|
|
|
|
|
/-- Time ordering is transitive. -/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
instance : IsTrans 𝓕.FieldOp 𝓕.timeOrderRel where
|
2025-01-20 15:17:48 +00:00
|
|
|
|
trans a b c := by
|
|
|
|
|
cases a <;> cases b <;> cases c <;>
|
|
|
|
|
simp only [timeOrderRel, Fin.isValue, implies_true, imp_self, IsEmpty.forall_iff]
|
|
|
|
|
exact fun h1 h2 => Preorder.le_trans _ _ _ h2 h1
|
|
|
|
|
|
|
|
|
|
noncomputable section
|
|
|
|
|
|
|
|
|
|
open FieldStatistic
|
|
|
|
|
open HepLean.List
|
|
|
|
|
|
|
|
|
|
/-- Given a list `φ :: φs` of states, the (zero-based) position of the state which is
|
|
|
|
|
of maximum time. For example
|
|
|
|
|
- for the list `[φ1(t = 4), φ2(t = 5), φ3(t = 3), φ4(t = 5)]` this would return `1`.
|
|
|
|
|
This is defined for a list `φ :: φs` instead of `φs` to ensure that such a position exists.
|
|
|
|
|
-/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
def maxTimeFieldPos (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) : ℕ :=
|
2025-01-20 15:17:48 +00:00
|
|
|
|
insertionSortMinPos timeOrderRel φ φs
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma maxTimeFieldPos_lt_length (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
2025-01-20 15:17:48 +00:00
|
|
|
|
maxTimeFieldPos φ φs < (φ :: φs).length := by
|
|
|
|
|
simp [maxTimeFieldPos]
|
|
|
|
|
|
|
|
|
|
/-- Given a list `φ :: φs` of states, the left-most state of maximum time, if there are more.
|
|
|
|
|
As an example:
|
|
|
|
|
- for the list `[φ1(t = 4), φ2(t = 5), φ3(t = 3), φ4(t = 5)]` this would return `φ2(t = 5)`.
|
|
|
|
|
It is the state at the position `maxTimeFieldPos φ φs`.
|
|
|
|
|
-/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
def maxTimeField (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) : 𝓕.FieldOp :=
|
2025-01-20 15:17:48 +00:00
|
|
|
|
insertionSortMin timeOrderRel φ φs
|
|
|
|
|
|
|
|
|
|
/-- Given a list `φ :: φs` of states, the list with the left-most state of maximum
|
|
|
|
|
time removed.
|
|
|
|
|
As an example:
|
|
|
|
|
- for the list `[φ1(t = 4), φ2(t = 5), φ3(t = 3), φ4(t = 5)]` this would return
|
|
|
|
|
`[φ1(t = 4), φ3(t = 3), φ4(t = 5)]`.
|
|
|
|
|
-/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
def eraseMaxTimeField (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) : List 𝓕.FieldOp :=
|
2025-01-20 15:17:48 +00:00
|
|
|
|
insertionSortDropMinPos timeOrderRel φ φs
|
|
|
|
|
|
|
|
|
|
@[simp]
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma eraseMaxTimeField_length (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
2025-01-20 15:17:48 +00:00
|
|
|
|
(eraseMaxTimeField φ φs).length = φs.length := by
|
|
|
|
|
simp [eraseMaxTimeField, insertionSortDropMinPos, eraseIdx_length']
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma maxTimeFieldPos_lt_eraseMaxTimeField_length_succ (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
2025-01-20 15:17:48 +00:00
|
|
|
|
maxTimeFieldPos φ φs < (eraseMaxTimeField φ φs).length.succ := by
|
|
|
|
|
simp only [eraseMaxTimeField_length, Nat.succ_eq_add_one]
|
|
|
|
|
exact maxTimeFieldPos_lt_length φ φs
|
|
|
|
|
|
|
|
|
|
/-- Given a list `φ :: φs` of states, the position of the left-most state of maximum
|
2025-02-07 15:43:59 +00:00
|
|
|
|
time as an element of `Fin (eraseMaxTimeField φ φs).length.succ`.
|
2025-01-20 15:17:48 +00:00
|
|
|
|
As an example:
|
|
|
|
|
- for the list `[φ1(t = 4), φ2(t = 5), φ3(t = 3), φ4(t = 5)]` this would return `⟨1,...⟩`.
|
|
|
|
|
-/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
def maxTimeFieldPosFin (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
2025-01-20 15:17:48 +00:00
|
|
|
|
Fin (eraseMaxTimeField φ φs).length.succ :=
|
|
|
|
|
insertionSortMinPosFin timeOrderRel φ φs
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma lt_maxTimeFieldPosFin_not_timeOrder (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
2025-01-20 15:17:48 +00:00
|
|
|
|
(i : Fin (eraseMaxTimeField φ φs).length)
|
|
|
|
|
(hi : (maxTimeFieldPosFin φ φs).succAbove i < maxTimeFieldPosFin φ φs) :
|
|
|
|
|
¬ timeOrderRel ((eraseMaxTimeField φ φs)[i.val]) (maxTimeField φ φs) := by
|
|
|
|
|
exact insertionSortMin_lt_mem_insertionSortDropMinPos_of_lt timeOrderRel φ φs i hi
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma timeOrder_maxTimeField (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
2025-01-20 15:17:48 +00:00
|
|
|
|
(i : Fin (eraseMaxTimeField φ φs).length) :
|
|
|
|
|
timeOrderRel (maxTimeField φ φs) ((eraseMaxTimeField φ φs)[i.val]) := by
|
|
|
|
|
exact insertionSortMin_lt_mem_insertionSortDropMinPos timeOrderRel φ φs _
|
|
|
|
|
|
|
|
|
|
/-- The sign associated with putting a list of states into time order (with
|
|
|
|
|
the state of greatest time to the left).
|
|
|
|
|
We pick up a minus sign for every fermion paired crossed. -/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
def timeOrderSign (φs : List 𝓕.FieldOp) : ℂ :=
|
2025-02-06 10:06:05 +00:00
|
|
|
|
Wick.koszulSign 𝓕.fieldOpStatistic 𝓕.timeOrderRel φs
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-01-27 11:12:48 +00:00
|
|
|
|
@[simp]
|
|
|
|
|
lemma timeOrderSign_nil : timeOrderSign (𝓕 := 𝓕) [] = 1 := by
|
|
|
|
|
simp only [timeOrderSign]
|
|
|
|
|
rfl
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma timeOrderSign_pair_ordered {φ ψ : 𝓕.FieldOp} (h : timeOrderRel φ ψ) :
|
2025-01-20 15:17:48 +00:00
|
|
|
|
timeOrderSign [φ, ψ] = 1 := by
|
|
|
|
|
simp only [timeOrderSign, Wick.koszulSign, Wick.koszulSignInsert, mul_one, ite_eq_left_iff,
|
|
|
|
|
ite_eq_right_iff, and_imp]
|
|
|
|
|
exact fun h' => False.elim (h' h)
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma timeOrderSign_pair_not_ordered {φ ψ : 𝓕.FieldOp} (h : ¬ timeOrderRel φ ψ) :
|
2025-01-20 15:17:48 +00:00
|
|
|
|
timeOrderSign [φ, ψ] = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) := by
|
|
|
|
|
simp only [timeOrderSign, Wick.koszulSign, Wick.koszulSignInsert, mul_one, instCommGroup.eq_1]
|
|
|
|
|
rw [if_neg h]
|
|
|
|
|
simp [FieldStatistic.exchangeSign_eq_if]
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma timerOrderSign_of_eraseMaxTimeField (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
2025-01-20 15:17:48 +00:00
|
|
|
|
timeOrderSign (eraseMaxTimeField φ φs) = timeOrderSign (φ :: φs) *
|
|
|
|
|
𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ (φ :: φs).take (maxTimeFieldPos φ φs)) := by
|
|
|
|
|
rw [eraseMaxTimeField, insertionSortDropMinPos, timeOrderSign,
|
|
|
|
|
Wick.koszulSign_eraseIdx_insertionSortMinPos]
|
|
|
|
|
rw [← timeOrderSign, ← maxTimeField]
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
/-- The time ordering of a list of states. A schematic example is:
|
|
|
|
|
- `normalOrderList [φ1(t = 4), φ2(t = 5), φ3(t = 3), φ4(t = 5)]` is equal to
|
|
|
|
|
`[φ2(t = 5), φ4(t = 5), φ1(t = 4), φ3(t = 3)]` -/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
def timeOrderList (φs : List 𝓕.FieldOp) : List 𝓕.FieldOp :=
|
2025-01-20 15:17:48 +00:00
|
|
|
|
List.insertionSort 𝓕.timeOrderRel φs
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma timeOrderList_pair_ordered {φ ψ : 𝓕.FieldOp} (h : timeOrderRel φ ψ) :
|
2025-01-20 15:17:48 +00:00
|
|
|
|
timeOrderList [φ, ψ] = [φ, ψ] := by
|
|
|
|
|
simp only [timeOrderList, List.insertionSort, List.orderedInsert, ite_eq_left_iff,
|
|
|
|
|
List.cons.injEq, and_true]
|
|
|
|
|
exact fun h' => False.elim (h' h)
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma timeOrderList_pair_not_ordered {φ ψ : 𝓕.FieldOp} (h : ¬ timeOrderRel φ ψ) :
|
2025-01-20 15:17:48 +00:00
|
|
|
|
timeOrderList [φ, ψ] = [ψ, φ] := by
|
|
|
|
|
simp only [timeOrderList, List.insertionSort, List.orderedInsert, ite_eq_right_iff,
|
|
|
|
|
List.cons.injEq, and_true]
|
|
|
|
|
exact fun h' => False.elim (h h')
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma timeOrderList_nil : timeOrderList (𝓕 := 𝓕) [] = [] := by
|
|
|
|
|
simp [timeOrderList]
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma timeOrderList_eq_maxTimeField_timeOrderList (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
2025-01-20 15:17:48 +00:00
|
|
|
|
timeOrderList (φ :: φs) = maxTimeField φ φs :: timeOrderList (eraseMaxTimeField φ φs) := by
|
|
|
|
|
exact insertionSort_eq_insertionSortMin_cons timeOrderRel φ φs
|
|
|
|
|
|
2025-01-27 11:12:48 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
## Time ordering for CrAnFieldOp
|
2025-01-27 11:12:48 +00:00
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## timeOrderRel
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
2025-02-06 13:31:59 +00:00
|
|
|
|
/-- For a field specification `𝓕`, `𝓕.crAnTimeOrderRel` is a relation on
|
2025-02-06 13:28:52 +00:00
|
|
|
|
`𝓕.CrAnFieldOp` representing time ordering.
|
2025-02-10 10:21:57 +00:00
|
|
|
|
It is defined such that `𝓕.crAnTimeOrderRel φ₀ φ₁` is true if and only if one of the following
|
2025-02-06 13:28:52 +00:00
|
|
|
|
holds
|
|
|
|
|
- `φ₀` is an *outgoing* asymptotic operator
|
|
|
|
|
- `φ₁` is an *incoming* asymptotic field operator
|
|
|
|
|
- `φ₀` and `φ₁` are both position field operators where
|
|
|
|
|
the `SpaceTime` point of `φ₀` has a time *greater* then or equal to that of `φ₁`.
|
|
|
|
|
|
|
|
|
|
Thus, colloquially `𝓕.crAnTimeOrderRel φ₀ φ₁` if `φ₀` has time *greater* then or equal to `φ₁`.
|
2025-02-10 10:21:57 +00:00
|
|
|
|
The use of *greater* then rather then *less* then is because on ordering lists of operators
|
|
|
|
|
it is needed that the operator with the greatest time is to the left.
|
2025-02-06 13:31:59 +00:00
|
|
|
|
-/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
def crAnTimeOrderRel (a b : 𝓕.CrAnFieldOp) : Prop := 𝓕.timeOrderRel a.1 b.1
|
2025-01-27 11:12:48 +00:00
|
|
|
|
|
2025-02-10 10:51:44 +00:00
|
|
|
|
/-- The relation `crAnTimeOrderRel` is decidable, but not computable so due to
|
2025-01-27 11:12:48 +00:00
|
|
|
|
`Real.decidableLE`. -/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
noncomputable instance (φ φ' : 𝓕.CrAnFieldOp) : Decidable (crAnTimeOrderRel φ φ') :=
|
2025-01-27 11:12:48 +00:00
|
|
|
|
inferInstanceAs (Decidable (𝓕.timeOrderRel φ.1 φ'.1))
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
/-- Time ordering of `CrAnFieldOp` is total. -/
|
|
|
|
|
instance : IsTotal 𝓕.CrAnFieldOp 𝓕.crAnTimeOrderRel where
|
2025-01-27 11:12:48 +00:00
|
|
|
|
total a b := IsTotal.total (r := 𝓕.timeOrderRel) a.1 b.1
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
/-- Time ordering of `CrAnFieldOp` is transitive. -/
|
|
|
|
|
instance : IsTrans 𝓕.CrAnFieldOp 𝓕.crAnTimeOrderRel where
|
2025-01-27 11:12:48 +00:00
|
|
|
|
trans a b c := IsTrans.trans (r := 𝓕.timeOrderRel) a.1 b.1 c.1
|
|
|
|
|
|
2025-01-27 16:13:54 +00:00
|
|
|
|
@[simp]
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma crAnTimeOrderRel_refl (φ : 𝓕.CrAnFieldOp) : crAnTimeOrderRel φ φ := by
|
2025-01-27 16:13:54 +00:00
|
|
|
|
exact (IsTotal.to_isRefl (r := 𝓕.crAnTimeOrderRel)).refl φ
|
|
|
|
|
|
2025-02-06 13:28:52 +00:00
|
|
|
|
/-- For a field specification `𝓕`, and a list `φs` of `𝓕.CrAnFieldOp`,
|
|
|
|
|
`𝓕.crAnTimeOrderSign φs` is the sign corresponding to the number of `ferimionic`-`fermionic`
|
2025-02-06 14:10:45 +00:00
|
|
|
|
exchanges undertaken to time-order (i.e. order with respect to `𝓕.crAnTimeOrderRel`) `φs` using
|
|
|
|
|
the insertion sort algorithm. -/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
def crAnTimeOrderSign (φs : List 𝓕.CrAnFieldOp) : ℂ :=
|
2025-01-27 11:12:48 +00:00
|
|
|
|
Wick.koszulSign 𝓕.crAnStatistics 𝓕.crAnTimeOrderRel φs
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma crAnTimeOrderSign_nil : crAnTimeOrderSign (𝓕 := 𝓕) [] = 1 := by
|
|
|
|
|
simp only [crAnTimeOrderSign]
|
|
|
|
|
rfl
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma crAnTimeOrderSign_pair_ordered {φ ψ : 𝓕.CrAnFieldOp} (h : crAnTimeOrderRel φ ψ) :
|
2025-01-27 16:13:54 +00:00
|
|
|
|
crAnTimeOrderSign [φ, ψ] = 1 := by
|
|
|
|
|
simp only [crAnTimeOrderSign, Wick.koszulSign, Wick.koszulSignInsert, mul_one, ite_eq_left_iff,
|
|
|
|
|
ite_eq_right_iff, and_imp]
|
|
|
|
|
exact fun h' => False.elim (h' h)
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma crAnTimeOrderSign_pair_not_ordered {φ ψ : 𝓕.CrAnFieldOp} (h : ¬ crAnTimeOrderRel φ ψ) :
|
2025-01-27 16:13:54 +00:00
|
|
|
|
crAnTimeOrderSign [φ, ψ] = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) := by
|
|
|
|
|
simp only [crAnTimeOrderSign, Wick.koszulSign, Wick.koszulSignInsert, mul_one, instCommGroup.eq_1]
|
|
|
|
|
rw [if_neg h]
|
|
|
|
|
simp [FieldStatistic.exchangeSign_eq_if]
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma crAnTimeOrderSign_swap_eq_time {φ ψ : 𝓕.CrAnFieldOp}
|
|
|
|
|
(h1 : crAnTimeOrderRel φ ψ) (h2 : crAnTimeOrderRel ψ φ) (φs φs' : List 𝓕.CrAnFieldOp) :
|
2025-01-28 16:56:20 +00:00
|
|
|
|
crAnTimeOrderSign (φs ++ φ :: ψ :: φs') = crAnTimeOrderSign (φs ++ ψ :: φ :: φs') := by
|
|
|
|
|
exact Wick.koszulSign_swap_eq_rel _ _ h1 h2 _ _
|
2025-01-27 16:13:54 +00:00
|
|
|
|
|
2025-02-06 13:28:52 +00:00
|
|
|
|
/-- For a field specification `𝓕`, and a list `φs` of `𝓕.CrAnFieldOp`,
|
|
|
|
|
`𝓕.crAnTimeOrderList φs` is the list `φs` time-ordered using the insertion sort algorithm. -/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
def crAnTimeOrderList (φs : List 𝓕.CrAnFieldOp) : List 𝓕.CrAnFieldOp :=
|
2025-01-27 11:12:48 +00:00
|
|
|
|
List.insertionSort 𝓕.crAnTimeOrderRel φs
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma crAnTimeOrderList_nil : crAnTimeOrderList (𝓕 := 𝓕) [] = [] := by
|
|
|
|
|
simp [crAnTimeOrderList]
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma crAnTimeOrderList_pair_ordered {φ ψ : 𝓕.CrAnFieldOp} (h : crAnTimeOrderRel φ ψ) :
|
2025-01-27 16:13:54 +00:00
|
|
|
|
crAnTimeOrderList [φ, ψ] = [φ, ψ] := by
|
|
|
|
|
simp only [crAnTimeOrderList, List.insertionSort, List.orderedInsert, ite_eq_left_iff,
|
|
|
|
|
List.cons.injEq, and_true]
|
|
|
|
|
exact fun h' => False.elim (h' h)
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma crAnTimeOrderList_pair_not_ordered {φ ψ : 𝓕.CrAnFieldOp} (h : ¬ crAnTimeOrderRel φ ψ) :
|
2025-01-27 16:13:54 +00:00
|
|
|
|
crAnTimeOrderList [φ, ψ] = [ψ, φ] := by
|
|
|
|
|
simp only [crAnTimeOrderList, List.insertionSort, List.orderedInsert, ite_eq_right_iff,
|
|
|
|
|
List.cons.injEq, and_true]
|
|
|
|
|
exact fun h' => False.elim (h h')
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma orderedInsert_swap_eq_time {φ ψ : 𝓕.CrAnFieldOp}
|
|
|
|
|
(h1 : crAnTimeOrderRel φ ψ) (h2 : crAnTimeOrderRel ψ φ) (φs : List 𝓕.CrAnFieldOp) :
|
2025-01-27 16:13:54 +00:00
|
|
|
|
List.orderedInsert crAnTimeOrderRel φ (List.orderedInsert crAnTimeOrderRel ψ φs) =
|
|
|
|
|
List.takeWhile (fun b => ¬ crAnTimeOrderRel ψ b) φs ++ φ :: ψ ::
|
|
|
|
|
List.dropWhile (fun b => ¬ crAnTimeOrderRel ψ b) φs := by
|
|
|
|
|
rw [List.orderedInsert_eq_take_drop crAnTimeOrderRel ψ φs]
|
|
|
|
|
simp only [decide_not]
|
|
|
|
|
rw [List.orderedInsert_eq_take_drop]
|
|
|
|
|
simp only [decide_not]
|
2025-02-03 11:28:14 +00:00
|
|
|
|
have h1 (b : 𝓕.CrAnFieldOp) : (crAnTimeOrderRel φ b) ↔ (crAnTimeOrderRel ψ b) :=
|
2025-01-27 16:13:54 +00:00
|
|
|
|
Iff.intro (fun h => IsTrans.trans _ _ _ h2 h) (fun h => IsTrans.trans _ _ _ h1 h)
|
|
|
|
|
simp only [h1]
|
|
|
|
|
rw [List.takeWhile_append]
|
|
|
|
|
rw [List.takeWhile_takeWhile]
|
|
|
|
|
simp only [Bool.not_eq_eq_eq_not, Bool.not_true, decide_eq_false_iff_not, and_self, decide_not,
|
|
|
|
|
↓reduceIte, crAnTimeOrderRel_refl, decide_true, Bool.false_eq_true, not_false_eq_true,
|
|
|
|
|
List.takeWhile_cons_of_neg, List.append_nil, List.append_cancel_left_eq, List.cons.injEq,
|
|
|
|
|
true_and]
|
|
|
|
|
rw [List.dropWhile_append]
|
|
|
|
|
simp only [List.isEmpty_eq_true, List.dropWhile_eq_nil_iff, Bool.not_eq_eq_eq_not, Bool.not_true,
|
|
|
|
|
decide_eq_false_iff_not, crAnTimeOrderRel_refl, decide_true, Bool.false_eq_true,
|
|
|
|
|
not_false_eq_true, List.dropWhile_cons_of_neg, ite_eq_left_iff, not_forall, Classical.not_imp,
|
|
|
|
|
Decidable.not_not, List.append_left_eq_self, forall_exists_index, and_imp]
|
|
|
|
|
intro x hx hxψ
|
|
|
|
|
intro y hy
|
|
|
|
|
simpa using List.mem_takeWhile_imp hy
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma orderedInsert_in_swap_eq_time {φ ψ φ': 𝓕.CrAnFieldOp} (h1 : crAnTimeOrderRel φ ψ)
|
|
|
|
|
(h2 : crAnTimeOrderRel ψ φ) : (φs φs' : List 𝓕.CrAnFieldOp) → ∃ l1 l2,
|
2025-01-27 16:13:54 +00:00
|
|
|
|
List.orderedInsert crAnTimeOrderRel φ' (φs ++ φ :: ψ :: φs') = l1 ++ φ :: ψ :: l2 ∧
|
|
|
|
|
List.orderedInsert crAnTimeOrderRel φ' (φs ++ ψ :: φ :: φs') = l1 ++ ψ :: φ :: l2
|
|
|
|
|
| [], φs' => by
|
2025-02-03 11:28:14 +00:00
|
|
|
|
have h1 (b : 𝓕.CrAnFieldOp) : (crAnTimeOrderRel b φ) ↔ (crAnTimeOrderRel b ψ) :=
|
2025-01-27 16:13:54 +00:00
|
|
|
|
Iff.intro (fun h => IsTrans.trans _ _ _ h h1) (fun h => IsTrans.trans _ _ _ h h2)
|
|
|
|
|
by_cases h : crAnTimeOrderRel φ' φ
|
|
|
|
|
· simp only [List.orderedInsert, h, ↓reduceIte, ← h1 φ']
|
|
|
|
|
use [φ'], φs'
|
|
|
|
|
simp
|
|
|
|
|
· simp only [List.orderedInsert, h, ↓reduceIte, ← h1 φ']
|
|
|
|
|
use [], List.orderedInsert crAnTimeOrderRel φ' φs'
|
|
|
|
|
simp
|
|
|
|
|
| φ'' :: φs, φs' => by
|
|
|
|
|
obtain ⟨l1, l2, hl⟩ := orderedInsert_in_swap_eq_time (φ' := φ') h1 h2 φs φs'
|
|
|
|
|
simp only [List.orderedInsert, List.append_eq]
|
|
|
|
|
rw [hl.1, hl.2]
|
|
|
|
|
by_cases h : crAnTimeOrderRel φ' φ''
|
|
|
|
|
· simp only [h, ↓reduceIte]
|
|
|
|
|
use (φ' :: φ'' :: φs), φs'
|
|
|
|
|
simp
|
|
|
|
|
· simp only [h, ↓reduceIte]
|
|
|
|
|
use (φ'' :: l1), l2
|
|
|
|
|
simp
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma crAnTimeOrderList_swap_eq_time {φ ψ : 𝓕.CrAnFieldOp}
|
2025-01-27 16:13:54 +00:00
|
|
|
|
(h1 : crAnTimeOrderRel φ ψ) (h2 : crAnTimeOrderRel ψ φ) :
|
2025-02-03 11:28:14 +00:00
|
|
|
|
(φs φs' : List 𝓕.CrAnFieldOp) →
|
|
|
|
|
∃ (l1 l2 : List 𝓕.CrAnFieldOp),
|
2025-01-27 16:13:54 +00:00
|
|
|
|
crAnTimeOrderList (φs ++ φ :: ψ :: φs') = l1 ++ φ :: ψ :: l2 ∧
|
|
|
|
|
crAnTimeOrderList (φs ++ ψ :: φ :: φs') = l1 ++ ψ :: φ :: l2
|
|
|
|
|
| [], φs' => by
|
|
|
|
|
simp only [crAnTimeOrderList]
|
|
|
|
|
simp only [List.insertionSort]
|
|
|
|
|
use List.takeWhile (fun b => ¬ crAnTimeOrderRel ψ b) (List.insertionSort crAnTimeOrderRel φs'),
|
|
|
|
|
List.dropWhile (fun b => ¬ crAnTimeOrderRel ψ b) (List.insertionSort crAnTimeOrderRel φs')
|
|
|
|
|
apply And.intro
|
|
|
|
|
· exact orderedInsert_swap_eq_time h1 h2 _
|
2025-02-03 11:28:14 +00:00
|
|
|
|
· have h1' (b : 𝓕.CrAnFieldOp) : (crAnTimeOrderRel φ b) ↔ (crAnTimeOrderRel ψ b) :=
|
2025-01-27 16:13:54 +00:00
|
|
|
|
Iff.intro (fun h => IsTrans.trans _ _ _ h2 h) (fun h => IsTrans.trans _ _ _ h1 h)
|
|
|
|
|
simp only [← h1', decide_not]
|
|
|
|
|
simpa using orderedInsert_swap_eq_time h2 h1 _
|
|
|
|
|
| φ'' :: φs, φs' => by
|
|
|
|
|
rw [crAnTimeOrderList, crAnTimeOrderList]
|
|
|
|
|
simp only [List.insertionSort, List.append_eq]
|
|
|
|
|
obtain ⟨l1, l2, hl⟩ := crAnTimeOrderList_swap_eq_time h1 h2 φs φs'
|
|
|
|
|
simp only [crAnTimeOrderList] at hl
|
|
|
|
|
rw [hl.1, hl.2]
|
|
|
|
|
obtain ⟨l1', l2', hl'⟩ := orderedInsert_in_swap_eq_time (φ' := φ'') h1 h2 l1 l2
|
|
|
|
|
rw [hl'.1, hl'.2]
|
|
|
|
|
use l1', l2'
|
|
|
|
|
|
2025-01-27 11:12:48 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Relationship to sections
|
|
|
|
|
-/
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma koszulSignInsert_crAnTimeOrderRel_crAnSection {φ : 𝓕.FieldOp} {ψ : 𝓕.CrAnFieldOp}
|
|
|
|
|
(h : ψ.1 = φ) : {φs : List 𝓕.FieldOp} → (ψs : CrAnSection φs) →
|
2025-01-27 11:12:48 +00:00
|
|
|
|
Wick.koszulSignInsert 𝓕.crAnStatistics 𝓕.crAnTimeOrderRel ψ ψs.1 =
|
2025-02-06 10:06:05 +00:00
|
|
|
|
Wick.koszulSignInsert 𝓕.fieldOpStatistic 𝓕.timeOrderRel φ φs
|
2025-01-27 11:12:48 +00:00
|
|
|
|
| [], ⟨[], h⟩ => by
|
|
|
|
|
simp [Wick.koszulSignInsert]
|
|
|
|
|
| φ' :: φs, ⟨ψ' :: ψs, h1⟩ => by
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp only [Wick.koszulSignInsert, crAnTimeOrderRel, h]
|
|
|
|
|
simp only [List.map_cons, List.cons.injEq] at h1
|
2025-01-27 11:12:48 +00:00
|
|
|
|
have hi := koszulSignInsert_crAnTimeOrderRel_crAnSection h (φs := φs) ⟨ψs, h1.2⟩
|
|
|
|
|
rw [hi]
|
|
|
|
|
congr
|
|
|
|
|
· exact h1.1
|
2025-02-03 11:28:14 +00:00
|
|
|
|
· simp only [crAnStatistics, crAnFieldOpToFieldOp, Function.comp_apply]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
congr
|
2025-02-03 11:28:14 +00:00
|
|
|
|
· simp only [crAnStatistics, crAnFieldOpToFieldOp, Function.comp_apply]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
congr
|
|
|
|
|
exact h1.1
|
|
|
|
|
|
|
|
|
|
@[simp]
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma crAnTimeOrderSign_crAnSection : {φs : List 𝓕.FieldOp} → (ψs : CrAnSection φs) →
|
2025-01-27 11:12:48 +00:00
|
|
|
|
crAnTimeOrderSign ψs.1 = timeOrderSign φs
|
|
|
|
|
| [], ⟨[], h⟩ => by
|
|
|
|
|
simp
|
|
|
|
|
| φ :: φs, ⟨ψ :: ψs, h⟩ => by
|
|
|
|
|
simp only [crAnTimeOrderSign, Wick.koszulSign, timeOrderSign]
|
|
|
|
|
simp only [List.map_cons, List.cons.injEq] at h
|
|
|
|
|
congr 1
|
|
|
|
|
· rw [koszulSignInsert_crAnTimeOrderRel_crAnSection h.1 ⟨ψs, h.2⟩]
|
|
|
|
|
· exact crAnTimeOrderSign_crAnSection ⟨ψs, h.2⟩
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma orderedInsert_crAnTimeOrderRel_crAnSection {φ : 𝓕.FieldOp} {ψ : 𝓕.CrAnFieldOp}
|
|
|
|
|
(h : ψ.1 = φ) : {φs : List 𝓕.FieldOp} → (ψs : CrAnSection φs) →
|
|
|
|
|
(List.orderedInsert 𝓕.crAnTimeOrderRel ψ ψs.1).map 𝓕.crAnFieldOpToFieldOp =
|
2025-01-27 11:12:48 +00:00
|
|
|
|
List.orderedInsert 𝓕.timeOrderRel φ φs
|
|
|
|
|
| [], ⟨[], _⟩ => by
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp only [List.orderedInsert, List.map_cons, List.map_nil, List.cons.injEq, and_true]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
exact h
|
|
|
|
|
| φ' :: φs, ⟨ψ' :: ψs, h1⟩ => by
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp only [List.orderedInsert, crAnTimeOrderRel, h]
|
|
|
|
|
simp only [List.map_cons, List.cons.injEq] at h1
|
2025-01-27 11:12:48 +00:00
|
|
|
|
by_cases hr : timeOrderRel φ φ'
|
2025-01-27 11:26:02 +00:00
|
|
|
|
· simp only [hr, ↓reduceIte]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
rw [← h1.1] at hr
|
2025-02-03 11:28:14 +00:00
|
|
|
|
simp only [crAnFieldOpToFieldOp] at hr
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp only [hr, ↓reduceIte, List.map_cons, List.cons.injEq]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
exact And.intro h (And.intro h1.1 h1.2)
|
2025-01-27 11:26:02 +00:00
|
|
|
|
· simp only [hr, ↓reduceIte]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
rw [← h1.1] at hr
|
2025-02-03 11:28:14 +00:00
|
|
|
|
simp only [crAnFieldOpToFieldOp] at hr
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp only [hr, ↓reduceIte, List.map_cons, List.cons.injEq]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
apply And.intro h1.1
|
|
|
|
|
exact orderedInsert_crAnTimeOrderRel_crAnSection h ⟨ψs, h1.2⟩
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma crAnTimeOrderList_crAnSection_is_crAnSection : {φs : List 𝓕.FieldOp} → (ψs : CrAnSection φs) →
|
|
|
|
|
(crAnTimeOrderList ψs.1).map 𝓕.crAnFieldOpToFieldOp = timeOrderList φs
|
2025-01-27 11:12:48 +00:00
|
|
|
|
| [], ⟨[], h⟩ => by
|
|
|
|
|
simp
|
|
|
|
|
| φ :: φs, ⟨ψ :: ψs, h⟩ => by
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp only [crAnTimeOrderList, List.insertionSort, timeOrderList]
|
|
|
|
|
simp only [List.map_cons, List.cons.injEq] at h
|
2025-01-27 11:12:48 +00:00
|
|
|
|
exact orderedInsert_crAnTimeOrderRel_crAnSection h.1 ⟨(List.insertionSort crAnTimeOrderRel ψs),
|
|
|
|
|
crAnTimeOrderList_crAnSection_is_crAnSection ⟨ψs, h.2⟩⟩
|
|
|
|
|
|
2025-01-27 11:26:02 +00:00
|
|
|
|
/-- Time ordering of sections of a list of states. -/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
def crAnSectionTimeOrder (φs : List 𝓕.FieldOp) (ψs : CrAnSection φs) :
|
2025-01-27 11:12:48 +00:00
|
|
|
|
CrAnSection (timeOrderList φs) :=
|
|
|
|
|
⟨crAnTimeOrderList ψs.1, crAnTimeOrderList_crAnSection_is_crAnSection ψs⟩
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma orderedInsert_crAnTimeOrderRel_injective {ψ ψ' : 𝓕.CrAnFieldOp} (h : ψ.1 = ψ'.1) :
|
|
|
|
|
{φs : List 𝓕.FieldOp} → (ψs ψs' : 𝓕.CrAnSection φs) →
|
2025-01-27 11:26:02 +00:00
|
|
|
|
(ho : List.orderedInsert crAnTimeOrderRel ψ ψs.1 =
|
|
|
|
|
List.orderedInsert crAnTimeOrderRel ψ' ψs'.1) → ψ = ψ' ∧ ψs = ψs'
|
2025-01-27 11:12:48 +00:00
|
|
|
|
| [], ⟨[], _⟩, ⟨[], _⟩, h => by
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp only [List.orderedInsert, List.cons.injEq, and_true] at h
|
2025-01-27 11:12:48 +00:00
|
|
|
|
simpa using h
|
|
|
|
|
| φ :: φs, ⟨ψ1 :: ψs, h1⟩, ⟨ψ1' :: ψs', h1'⟩, ho => by
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp only [List.map_cons, List.cons.injEq] at h1 h1'
|
2025-01-27 11:12:48 +00:00
|
|
|
|
have ih := orderedInsert_crAnTimeOrderRel_injective h ⟨ψs, h1.2⟩ ⟨ψs', h1'.2⟩
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp only [List.orderedInsert] at ho
|
2025-01-27 11:12:48 +00:00
|
|
|
|
by_cases hr : crAnTimeOrderRel ψ ψ1
|
2025-01-27 11:26:02 +00:00
|
|
|
|
· simp_all only [ite_true]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
by_cases hr2 : crAnTimeOrderRel ψ' ψ1'
|
|
|
|
|
· simp_all
|
2025-01-27 11:26:02 +00:00
|
|
|
|
· simp only [crAnTimeOrderRel] at hr hr2
|
|
|
|
|
simp_all only
|
2025-02-03 11:28:14 +00:00
|
|
|
|
rw [crAnFieldOpToFieldOp] at h1 h1'
|
2025-01-27 11:12:48 +00:00
|
|
|
|
rw [h1.1] at hr
|
|
|
|
|
rw [h1'.1] at hr2
|
|
|
|
|
exact False.elim (hr2 hr)
|
2025-01-27 11:26:02 +00:00
|
|
|
|
· simp_all only [ite_false]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
by_cases hr2 : crAnTimeOrderRel ψ' ψ1'
|
2025-01-27 11:26:02 +00:00
|
|
|
|
· simp only [crAnTimeOrderRel] at hr hr2
|
|
|
|
|
simp_all only
|
2025-02-03 11:28:14 +00:00
|
|
|
|
rw [crAnFieldOpToFieldOp] at h1 h1'
|
2025-01-27 11:12:48 +00:00
|
|
|
|
rw [h1.1] at hr
|
|
|
|
|
rw [h1'.1] at hr2
|
|
|
|
|
exact False.elim (hr hr2)
|
2025-01-27 11:26:02 +00:00
|
|
|
|
· simp only [hr2, ↓reduceIte, List.cons.injEq] at ho
|
2025-01-27 11:12:48 +00:00
|
|
|
|
have ih' := ih ho.2
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp_all only [and_self, implies_true, not_false_eq_true, true_and]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
apply Subtype.ext
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp only [List.cons.injEq, true_and]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
rw [Subtype.eq_iff] at ih'
|
|
|
|
|
exact ih'.2
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma crAnSectionTimeOrder_injective : {φs : List 𝓕.FieldOp} →
|
2025-01-27 11:12:48 +00:00
|
|
|
|
Function.Injective (𝓕.crAnSectionTimeOrder φs)
|
|
|
|
|
| [], ⟨[], _⟩, ⟨[], _⟩ => by
|
|
|
|
|
simp
|
|
|
|
|
| φ :: φs, ⟨ψ :: ψs, h⟩, ⟨ψ' :: ψs', h'⟩ => by
|
|
|
|
|
intro h1
|
|
|
|
|
apply Subtype.ext
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp only [List.cons.injEq]
|
|
|
|
|
simp only [crAnSectionTimeOrder] at h1
|
2025-01-27 11:12:48 +00:00
|
|
|
|
rw [Subtype.eq_iff] at h1
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp only [crAnTimeOrderList, List.insertionSort] at h1
|
|
|
|
|
simp only [List.map_cons, List.cons.injEq] at h h'
|
2025-02-03 11:28:14 +00:00
|
|
|
|
rw [crAnFieldOpToFieldOp] at h h'
|
2025-01-27 11:12:48 +00:00
|
|
|
|
have hin := orderedInsert_crAnTimeOrderRel_injective (by rw [h.1, h'.1])
|
|
|
|
|
(𝓕.crAnSectionTimeOrder φs ⟨ψs, h.2⟩)
|
|
|
|
|
(𝓕.crAnSectionTimeOrder φs ⟨ψs', h'.2⟩) h1
|
|
|
|
|
apply And.intro hin.1
|
|
|
|
|
have hl := crAnSectionTimeOrder_injective hin.2
|
|
|
|
|
rw [Subtype.ext_iff] at hl
|
|
|
|
|
simpa using hl
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma crAnSectionTimeOrder_bijective (φs : List 𝓕.FieldOp) :
|
2025-01-27 11:12:48 +00:00
|
|
|
|
Function.Bijective (𝓕.crAnSectionTimeOrder φs) := by
|
|
|
|
|
rw [Fintype.bijective_iff_injective_and_card]
|
|
|
|
|
apply And.intro crAnSectionTimeOrder_injective
|
|
|
|
|
apply CrAnSection.card_perm_eq
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp only [timeOrderList]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
exact List.Perm.symm (List.perm_insertionSort timeOrderRel φs)
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma sum_crAnSections_timeOrder {φs : List 𝓕.FieldOp} [AddCommMonoid M]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
(f : CrAnSection (timeOrderList φs) → M) : ∑ s, f s = ∑ s, f (𝓕.crAnSectionTimeOrder φs s) := by
|
|
|
|
|
erw [(Equiv.ofBijective _ (𝓕.crAnSectionTimeOrder_bijective φs)).sum_comp]
|
|
|
|
|
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## normTimeOrderRel
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
/-- The time ordering relation on `CrAnFieldOp` such that if two CrAnFieldOp have the same
|
2025-01-27 11:12:48 +00:00
|
|
|
|
time, we normal order them. -/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
def normTimeOrderRel (a b : 𝓕.CrAnFieldOp) : Prop :=
|
2025-01-27 11:12:48 +00:00
|
|
|
|
crAnTimeOrderRel a b ∧ (crAnTimeOrderRel b a → normalOrderRel a b)
|
|
|
|
|
|
2025-02-10 10:51:44 +00:00
|
|
|
|
/-- The relation `normTimeOrderRel` is decidable, but not computable so due to
|
2025-01-27 11:12:48 +00:00
|
|
|
|
`Real.decidableLE`. -/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
noncomputable instance (φ φ' : 𝓕.CrAnFieldOp) : Decidable (normTimeOrderRel φ φ') :=
|
2025-01-27 11:12:48 +00:00
|
|
|
|
instDecidableAnd
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
/-- Norm-Time ordering of `CrAnFieldOp` is total. -/
|
|
|
|
|
instance : IsTotal 𝓕.CrAnFieldOp 𝓕.normTimeOrderRel where
|
2025-01-27 11:12:48 +00:00
|
|
|
|
total a b := by
|
|
|
|
|
simp only [normTimeOrderRel]
|
|
|
|
|
match IsTotal.total (r := 𝓕.crAnTimeOrderRel) a b,
|
2025-01-27 11:26:02 +00:00
|
|
|
|
IsTotal.total (r := 𝓕.normalOrderRel) a b with
|
2025-01-27 11:12:48 +00:00
|
|
|
|
| Or.inl h1, Or.inl h2 => simp [h1, h2]
|
2025-01-27 11:26:02 +00:00
|
|
|
|
| Or.inr h1, Or.inl h2 =>
|
|
|
|
|
simp only [h1, h2, imp_self, and_true, true_and]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
by_cases hn : crAnTimeOrderRel a b
|
|
|
|
|
· simp [hn]
|
|
|
|
|
· simp [hn]
|
|
|
|
|
| Or.inl h1, Or.inr h2 =>
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp only [h1, true_and, h2, imp_self, and_true]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
by_cases hn : crAnTimeOrderRel b a
|
|
|
|
|
· simp [hn]
|
|
|
|
|
· simp [hn]
|
|
|
|
|
| Or.inr h1, Or.inr h2 => simp [h1, h2]
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
/-- Norm-Time ordering of `CrAnFieldOp` is transitive. -/
|
|
|
|
|
instance : IsTrans 𝓕.CrAnFieldOp 𝓕.normTimeOrderRel where
|
2025-01-27 11:12:48 +00:00
|
|
|
|
trans a b c := by
|
|
|
|
|
intro h1 h2
|
2025-01-27 11:26:02 +00:00
|
|
|
|
simp_all only [normTimeOrderRel]
|
2025-01-27 11:12:48 +00:00
|
|
|
|
apply And.intro
|
|
|
|
|
· exact IsTrans.trans _ _ _ h1.1 h2.1
|
|
|
|
|
· intro hc
|
|
|
|
|
refine IsTrans.trans _ _ _ (h1.2 ?_) (h2.2 ?_)
|
|
|
|
|
· exact IsTrans.trans _ _ _ h2.1 hc
|
|
|
|
|
· exact IsTrans.trans _ _ _ hc h1.1
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
/-- The sign associated with putting a list of `CrAnFieldOp` into normal-time order (with
|
2025-01-27 11:12:48 +00:00
|
|
|
|
the state of greatest time to the left).
|
|
|
|
|
We pick up a minus sign for every fermion paired crossed. -/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
def normTimeOrderSign (φs : List 𝓕.CrAnFieldOp) : ℂ :=
|
2025-01-27 11:12:48 +00:00
|
|
|
|
Wick.koszulSign 𝓕.crAnStatistics 𝓕.normTimeOrderRel φs
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
/-- Sort a list of `CrAnFieldOp` based on `normTimeOrderRel`. -/
|
|
|
|
|
def normTimeOrderList (φs : List 𝓕.CrAnFieldOp) : List 𝓕.CrAnFieldOp :=
|
2025-01-27 11:12:48 +00:00
|
|
|
|
List.insertionSort 𝓕.normTimeOrderRel φs
|
|
|
|
|
|
2025-01-20 15:17:48 +00:00
|
|
|
|
end
|
2025-01-21 06:11:47 +00:00
|
|
|
|
end FieldSpecification
|