PhysLean/HepLean/PerturbationTheory/WickContraction/StaticContract.lean

125 lines
5.1 KiB
Text
Raw Normal View History

2025-01-30 12:45:00 +00:00
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
2025-02-03 10:47:18 +00:00
import HepLean.PerturbationTheory.WickContraction.Sign.Basic
2025-02-03 12:12:36 +00:00
import HepLean.PerturbationTheory.FieldOpAlgebra.TimeContraction
2025-01-30 12:45:00 +00:00
/-!
# Time contractions
-/
open FieldSpecification
variable {𝓕 : FieldSpecification}
namespace WickContraction
variable {n : } (c : WickContraction n)
open HepLean.List
open FieldOpAlgebra
2025-02-07 09:56:37 +00:00
2025-02-10 10:21:57 +00:00
/-- For a list `φs` of `𝓕.FieldOp` and a Wick contraction `φsΛ`, the
2025-02-07 09:56:37 +00:00
element of the center of `𝓕.FieldOpAlgebra`, `φsΛ.staticContract` is defined as the product
2025-02-10 10:21:57 +00:00
of `[anPart φs[j], φs[k]]ₛ` over contracted pairs `{j, k}` in `φsΛ`
2025-02-07 09:56:37 +00:00
with `j < k`. -/
2025-02-03 11:28:14 +00:00
noncomputable def staticContract {φs : List 𝓕.FieldOp}
2025-01-30 12:45:00 +00:00
(φsΛ : WickContraction φs.length) :
Subalgebra.center 𝓕.FieldOpAlgebra :=
∏ (a : φsΛ.1), ⟨[anPart (φs.get (φsΛ.fstFieldOfContract a)),
ofFieldOp (φs.get (φsΛ.sndFieldOfContract a))]ₛ,
superCommute_anPart_ofFieldOp_mem_center _ _⟩
2025-02-07 09:56:37 +00:00
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
2025-02-10 10:21:57 +00:00
`𝓕.FieldOp`, and a `i ≤ φs.length`, then the following relation holds:
2025-02-07 09:56:37 +00:00
`(φsΛ ↩Λ φ i none).staticContract = φsΛ.staticContract`
The prove of this result ultimately a consequence of definitions.
-/
2025-01-30 12:45:00 +00:00
@[simp]
lemma staticContract_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
2025-01-30 12:45:00 +00:00
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) :
(φsΛ ↩Λ φ i none).staticContract = φsΛ.staticContract := by
rw [staticContract, insertAndContract_none_prod_contractions]
congr
ext a
simp
2025-02-07 09:56:37 +00:00
/--
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
2025-02-07 10:34:48 +00:00
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
2025-02-07 09:56:37 +00:00
`(φsΛ ↩Λ φ i (some k)).staticContract` is equal to the product of
- `[anPart φ, φs[k]]ₛ` if `i ≤ k` or `[anPart φs[k], φ]ₛ` if `k < i`
- `φsΛ.staticContract`.
The proof of this result ultimately a consequence of definitions.
-/
lemma staticContract_insert_some
2025-02-03 11:28:14 +00:00
(φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
2025-01-30 12:45:00 +00:00
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
(φsΛ ↩Λ φ i (some j)).staticContract =
(if i < i.succAbove j then
⟨[anPart φ, ofFieldOp φs[j.1]]ₛ, superCommute_anPart_ofFieldOp_mem_center _ _⟩
2025-02-03 05:39:48 +00:00
else ⟨[anPart φs[j.1], ofFieldOp φ]ₛ, superCommute_anPart_ofFieldOp_mem_center _ _⟩) *
2025-01-30 12:45:00 +00:00
φsΛ.staticContract := by
rw [staticContract, insertAndContract_some_prod_contractions]
congr 1
· simp only [Nat.succ_eq_add_one, insertAndContract_fstFieldOfContract_some_incl, finCongr_apply,
List.get_eq_getElem, insertAndContract_sndFieldOfContract_some_incl, Fin.getElem_fin]
split
· simp
· simp
· congr
ext a
simp
open FieldStatistic
lemma staticContract_insert_some_of_lt
2025-02-03 11:28:14 +00:00
(φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
2025-01-30 12:45:00 +00:00
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : φsΛ.uncontracted)
(hik : i < i.succAbove k) :
(φsΛ ↩Λ φ i (some k)).staticContract =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (φsΛ.uncontracted.filter (fun x => x < k))⟩)
2025-02-03 11:28:14 +00:00
• (contractStateAtIndex φ [φsΛ]ᵘᶜ ((uncontractedFieldOpEquiv φs φsΛ) (some k)) *
2025-01-30 12:45:00 +00:00
φsΛ.staticContract) := by
2025-02-07 09:56:37 +00:00
rw [staticContract_insert_some]
2025-01-30 12:45:00 +00:00
simp only [Nat.succ_eq_add_one, Fin.getElem_fin, ite_mul, instCommGroup.eq_1,
2025-02-03 11:28:14 +00:00
contractStateAtIndex, uncontractedFieldOpEquiv, Equiv.optionCongr_apply,
2025-01-30 12:45:00 +00:00
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply, Fin.coe_cast,
List.getElem_map, uncontractedList_getElem_uncontractedIndexEquiv_symm, List.get_eq_getElem,
Algebra.smul_mul_assoc, uncontractedListGet]
· simp only [hik, ↓reduceIte, MulMemClass.coe_mul]
trans (1 : ) • ((superCommute (anPart φ)) (ofFieldOp φs[k.1]) * ↑φsΛ.staticContract)
· simp
simp only [smul_smul]
congr 1
2025-02-06 10:06:05 +00:00
have h1 : ofList 𝓕.fieldOpStatistic (List.take (↑(φsΛ.uncontractedIndexEquiv.symm k))
2025-01-30 12:45:00 +00:00
(List.map φs.get φsΛ.uncontractedList))
= (𝓕 |>ₛ ⟨φs.get, (Finset.filter (fun x => x < k) φsΛ.uncontracted)⟩) := by
simp only [ofFinset]
congr
rw [← List.map_take]
congr
rw [take_uncontractedIndexEquiv_symm]
rw [filter_uncontractedList]
rw [h1]
simp only [exchangeSign_mul_self]
2025-02-03 11:28:14 +00:00
lemma staticContract_of_not_gradingCompliant (φs : List 𝓕.FieldOp)
2025-01-30 12:45:00 +00:00
(φsΛ : WickContraction φs.length) (h : ¬ GradingCompliant φs φsΛ) :
φsΛ.staticContract = 0 := by
rw [staticContract]
simp only [GradingCompliant, Fin.getElem_fin, Subtype.forall, not_forall] at h
obtain ⟨a, ha⟩ := h
obtain ⟨ha, ha2⟩ := ha
apply Finset.prod_eq_zero (i := ⟨a, ha⟩)
simp only [Finset.univ_eq_attach, Finset.mem_attach]
apply Subtype.eq
simp only [List.get_eq_getElem, ZeroMemClass.coe_zero]
2025-02-03 11:13:23 +00:00
rw [superCommute_anPart_ofFieldOpF_diff_grade_zero]
2025-01-30 12:45:00 +00:00
simp [ha2]
end WickContraction