PhysLean/HepLean/PerturbationTheory/Wick/OperatorMap.lean

350 lines
14 KiB
Text
Raw Normal View History

2024-12-15 12:42:50 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
2024-12-19 14:25:09 +00:00
import HepLean.PerturbationTheory.Wick.SuperCommute
2024-12-15 12:42:50 +00:00
/-!
2024-12-20 13:33:39 +00:00
# Operator map
2024-12-15 12:42:50 +00:00
-/
namespace Wick
noncomputable section
2024-12-20 13:33:39 +00:00
open FieldStatistic
2024-12-20 14:05:27 +00:00
variable {𝓕 : Type}
/-- A map from the free algebra of fields `FreeAlgebra 𝓕` to an algebra `A`, to be
2024-12-19 15:40:04 +00:00
thought of as the operator algebra is said to be an operator map if
all super commutors of fields land in the center of `A`,
if two fields are of a different grade then their super commutor lands on zero,
and the `koszulOrder` (normal order) of any term with a super commutor of two fields present
is zero.
This can be thought as as a condtion on the operator algebra `A` as much as it can
on `F`. -/
2024-12-20 13:34:49 +00:00
class OperatorMap {A : Type} [Semiring A] [Algebra A]
2024-12-20 14:05:27 +00:00
(q : 𝓕 → FieldStatistic) (le : 𝓕𝓕 → Prop)
[DecidableRel le] (F : FreeAlgebra 𝓕 →ₐ[] A) : Prop where
2024-12-19 12:59:14 +00:00
superCommute_mem_center : ∀ i j, F (superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j)) ∈
Subalgebra.center A
superCommute_diff_grade_zero : ∀ i j, q i ≠ q j →
F (superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j)) = 0
superCommute_ordered_zero : ∀ i j, ∀ a b,
2024-12-20 14:05:27 +00:00
F (koszulOrder q le (a * superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j) * b)) = 0
2024-12-15 12:42:50 +00:00
2024-12-19 11:23:49 +00:00
namespace OperatorMap
2024-12-20 14:05:27 +00:00
variable {A : Type} [Semiring A] [Algebra A]
{q : 𝓕 → FieldStatistic} {le : 𝓕𝓕 → Prop}
[DecidableRel le] (F : FreeAlgebra 𝓕 →ₐ[] A)
2024-12-19 11:23:49 +00:00
2024-12-20 14:05:27 +00:00
lemma superCommute_ofList_singleton_ι_center [OperatorMap q le F] (i j : 𝓕) :
2024-12-19 11:23:49 +00:00
F (superCommute q (ofList [i] xa) (FreeAlgebra.ι j)) ∈ Subalgebra.center A := by
have h1 : F (superCommute q (ofList [i] xa) (FreeAlgebra.ι j)) =
xa • F (superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j)) := by
2024-12-15 12:42:50 +00:00
rw [← map_smul]
congr
rw [ofList_eq_smul_one, ofList_singleton]
rw [map_smul]
rfl
rw [h1]
refine Subalgebra.smul_mem (Subalgebra.center A) ?_ xa
2024-12-20 14:05:27 +00:00
exact superCommute_mem_center (le := le) i j
2024-12-15 12:42:50 +00:00
2024-12-19 11:23:49 +00:00
end OperatorMap
2024-12-20 14:05:27 +00:00
variable {𝓕 : Type} (q : 𝓕 → FieldStatistic) (le : 𝓕𝓕 → Prop) [DecidableRel le]
lemma superCommuteSplit_operatorMap (lb : List 𝓕) (xa xb : ) (n : )
(hn : n < lb.length) {A : Type} [Semiring A] [Algebra A] (f : FreeAlgebra 𝓕 →ₐ[] A)
[OperatorMap q le f] (i : 𝓕) :
2024-12-19 14:25:09 +00:00
f (superCommuteSplit q [i] lb xa xb n hn) =
2024-12-15 12:42:50 +00:00
f (superCommute q (ofList [i] xa) (FreeAlgebra.ι (lb.get ⟨n, hn⟩)))
* (superCommuteCoef q [i] (List.take n lb) •
f (ofList (List.eraseIdx lb n) xb)) := by
have hn : f ((superCommute q) (ofList [i] xa) (FreeAlgebra.ι (lb.get ⟨n, hn⟩))) ∈
2024-12-19 12:59:14 +00:00
Subalgebra.center A :=
2024-12-20 14:05:27 +00:00
OperatorMap.superCommute_ofList_singleton_ι_center (le := le) f i (lb.get ⟨n, hn⟩)
2024-12-15 12:42:50 +00:00
rw [Subalgebra.mem_center_iff] at hn
2024-12-19 14:25:09 +00:00
rw [superCommuteSplit, map_mul, map_mul, map_smul, hn, mul_assoc, smul_mul_assoc,
2024-12-15 12:42:50 +00:00
← map_mul, ← ofList_pair]
congr
· exact Eq.symm (List.eraseIdx_eq_take_drop_succ lb n)
· exact one_mul xb
2024-12-20 14:05:27 +00:00
lemma superCommuteLiftSplit_operatorMap {f : 𝓕 → Type} [∀ i, Fintype (f i)]
(c : (Σ i, f i)) (r : List 𝓕) (x y : ) (n : )
2024-12-15 12:42:50 +00:00
(hn : n < r.length)
2024-12-20 14:05:27 +00:00
(le : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le]
2024-12-19 12:59:14 +00:00
{A : Type} [Semiring A] [Algebra A] (F : FreeAlgebra (Σ i, f i) →ₐ[] A)
2024-12-20 14:05:27 +00:00
[OperatorMap (fun i => q i.1) le F] :
2024-12-19 14:25:09 +00:00
F (superCommuteLiftSplit q [c] r x y n hn) = superCommuteLiftCoef q [c] (List.take n r) •
2024-12-19 12:59:14 +00:00
(F (superCommute (fun i => q i.1) (ofList [c] x)
2024-12-19 14:25:09 +00:00
(sumFiber f (FreeAlgebra.ι (r.get ⟨n, hn⟩))))
* F (ofListLift f (List.eraseIdx r n) y)) := by
rw [superCommuteLiftSplit]
2024-12-15 12:42:50 +00:00
rw [map_smul]
congr
rw [map_mul, map_mul]
2024-12-19 14:25:09 +00:00
have h1 : F ((superCommute fun i => q i.fst) (ofList [c] x) ((sumFiber f)
2024-12-19 12:59:14 +00:00
(FreeAlgebra.ι (r.get ⟨n, hn⟩)))) ∈ Subalgebra.center A := by
2024-12-19 14:25:09 +00:00
rw [sumFiber_ι]
2024-12-19 11:23:49 +00:00
rw [map_sum, map_sum]
refine Subalgebra.sum_mem _ ?_
intro n
2024-12-20 14:05:27 +00:00
exact fun a => OperatorMap.superCommute_ofList_singleton_ι_center (le := le) F c _
2024-12-15 12:42:50 +00:00
rw [Subalgebra.mem_center_iff] at h1
rw [h1, mul_assoc, ← map_mul]
congr
2024-12-19 14:25:09 +00:00
rw [ofListLift, ofListLift, ofListLift, ← map_mul]
2024-12-15 12:42:50 +00:00
congr
rw [← ofList_pair, one_mul]
congr
exact Eq.symm (List.eraseIdx_eq_take_drop_succ r n)
2024-12-20 14:05:27 +00:00
lemma superCommute_koszulOrder_le_ofList [IsTotal 𝓕 le] [IsTrans 𝓕 le] (r : List 𝓕) (x : )
(i : 𝓕) {A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra 𝓕 →ₐ A) [OperatorMap q le F] :
F ((superCommute q (FreeAlgebra.ι i) (koszulOrder q le (ofList r x)))) =
2024-12-17 07:15:47 +00:00
∑ n : Fin r.length, (superCommuteCoef q [r.get n] (r.take n)) •
(F (((superCommute q) (ofList [i] 1)) (FreeAlgebra.ι (r.get n))) *
2024-12-20 14:05:27 +00:00
F ((koszulOrder q le) (ofList (r.eraseIdx ↑n) x))) := by
2024-12-19 09:48:35 +00:00
rw [koszulOrder_ofList, map_smul, map_smul, ← ofList_singleton, superCommute_ofList_sum]
2024-12-20 14:05:27 +00:00
rw [map_sum, ← (HepLean.List.insertionSortEquiv le r).sum_comp]
2024-12-17 07:15:47 +00:00
conv_lhs =>
2024-12-19 09:48:35 +00:00
enter [2, 2]
2024-12-17 07:15:47 +00:00
intro n
2024-12-20 14:05:27 +00:00
rw [superCommuteSplit_operatorMap (le := le)]
2024-12-19 09:48:35 +00:00
enter [1, 2, 2, 2]
2024-12-20 14:05:27 +00:00
change ((List.insertionSort le r).get ∘ (HepLean.List.insertionSortEquiv le r)) n
2024-12-17 07:15:47 +00:00
rw [HepLean.List.insertionSort_get_comp_insertionSortEquiv]
conv_lhs =>
2024-12-19 09:48:35 +00:00
enter [2, 2]
2024-12-17 07:15:47 +00:00
intro n
2024-12-20 14:05:27 +00:00
rw [HepLean.List.eraseIdx_insertionSort_fin le r n]
rw [ofList_insertionSort_eq_koszulOrder q le]
2024-12-17 07:15:47 +00:00
rw [Finset.smul_sum]
conv_lhs =>
rhs
intro n
2024-12-19 09:48:35 +00:00
rw [map_smul, smul_smul, Algebra.mul_smul_comm, smul_smul]
2024-12-17 07:15:47 +00:00
congr
funext n
2024-12-19 09:48:35 +00:00
by_cases hq : q i ≠ q (r.get n)
2024-12-20 14:05:27 +00:00
· have hn := OperatorMap.superCommute_diff_grade_zero (q := q) (F := F) le i (r.get n) hq
2024-12-19 09:48:35 +00:00
conv_lhs =>
enter [2, 1]
rw [ofList_singleton, hn]
conv_rhs =>
enter [2, 1]
rw [ofList_singleton, hn]
simp
· congr 1
2024-12-20 14:05:27 +00:00
trans staticWickCoef q le r i n
2024-12-19 15:40:04 +00:00
· rw [staticWickCoef, mul_assoc]
2024-12-20 14:05:27 +00:00
refine staticWickCoef_eq_get q le r i n ?_
2024-12-19 09:48:35 +00:00
simpa using hq
2024-12-15 12:42:50 +00:00
2024-12-20 14:05:27 +00:00
lemma koszulOrder_of_le_all_ofList (r : List 𝓕) (x : ) (i : 𝓕)
2024-12-15 12:42:50 +00:00
{A : Type} [Semiring A] [Algebra A]
2024-12-20 14:05:27 +00:00
(F : FreeAlgebra 𝓕 →ₐ A) [OperatorMap q le F] :
F (koszulOrder q le (ofList r x * FreeAlgebra.ι i))
= superCommuteCoef q [i] r • F (koszulOrder q le (FreeAlgebra.ι i * ofList r x)) := by
2024-12-15 12:42:50 +00:00
conv_lhs =>
2024-12-19 09:48:35 +00:00
enter [2, 2]
2024-12-15 12:42:50 +00:00
rw [← ofList_singleton]
2024-12-19 14:25:09 +00:00
rw [ofListLift_ofList_superCommute' q]
2024-12-15 12:42:50 +00:00
rw [map_sub]
rw [sub_eq_add_neg]
rw [map_add]
conv_lhs =>
2024-12-19 09:48:35 +00:00
enter [2, 2]
2024-12-15 12:42:50 +00:00
rw [map_smul]
rw [← neg_smul]
rw [map_smul, map_smul, map_smul]
2024-12-19 11:23:49 +00:00
conv_lhs =>
rhs
rhs
rw [superCommute_ofList_sum]
rw [map_sum, map_sum]
2024-12-19 14:25:09 +00:00
dsimp [superCommuteSplit]
2024-12-19 11:23:49 +00:00
rw [ofList_singleton]
rhs
intro n
rw [Algebra.smul_mul_assoc, Algebra.smul_mul_assoc]
rw [map_smul, map_smul]
2024-12-19 12:59:14 +00:00
rw [OperatorMap.superCommute_ordered_zero]
simp only [smul_zero, Finset.sum_const_zero, add_zero]
2024-12-19 11:23:49 +00:00
rw [ofList_singleton]
2024-12-15 12:42:50 +00:00
2024-12-20 14:05:27 +00:00
lemma le_all_mul_koszulOrder_ofList (r : List 𝓕) (x : )
(i : 𝓕) (hi : ∀ (j : 𝓕), le j i)
2024-12-15 12:42:50 +00:00
{A : Type} [Semiring A] [Algebra A]
2024-12-20 14:05:27 +00:00
(F : FreeAlgebra 𝓕 →ₐ A) [OperatorMap q le F] :
F (FreeAlgebra.ι i * koszulOrder q le (ofList r x)) =
F ((koszulOrder q le) (FreeAlgebra.ι i * ofList r x)) +
F (((superCommute q) (ofList [i] 1)) ((koszulOrder q le) (ofList r x))) := by
2024-12-17 07:15:47 +00:00
rw [koszulOrder_ofList, Algebra.mul_smul_comm, map_smul, ← ofList_singleton,
ofList_ofList_superCommute q, map_add, smul_add, ← map_smul]
2024-12-15 12:42:50 +00:00
conv_lhs =>
2024-12-19 09:48:35 +00:00
enter [1, 2]
2024-12-17 07:15:47 +00:00
rw [← Algebra.smul_mul_assoc, smul_smul, mul_comm, ← smul_smul, ← koszulOrder_ofList,
Algebra.smul_mul_assoc, ofList_singleton]
rw [koszulOrder_mul_ge, map_smul]
congr
· rw [koszulOrder_of_le_all_ofList]
2024-12-20 14:05:27 +00:00
rw [superCommuteCoef_perm_snd q [i] (List.insertionSort le r) r
(List.perm_insertionSort le r)]
2024-12-19 09:48:35 +00:00
rw [smul_smul]
rw [superCommuteCoef_mul_self]
simp [ofList_singleton]
2024-12-17 07:15:47 +00:00
· rw [map_smul, map_smul]
· exact fun j => hi j
2024-12-20 14:05:27 +00:00
/-- In the expansions of `F (FreeAlgebra.ι i * koszulOrder q le (ofList r x))`
the ter multiplying `F ((koszulOrder q le) (ofList (optionEraseZ r i n) x))`. -/
def superCommuteCenterOrder (r : List 𝓕) (i : 𝓕)
2024-12-17 07:15:47 +00:00
{A : Type} [Semiring A] [Algebra A]
2024-12-20 14:05:27 +00:00
(F : FreeAlgebra 𝓕 →ₐ[] A)
2024-12-17 07:15:47 +00:00
(n : Option (Fin r.length)) : A :=
match n with
| none => 1
2024-12-19 12:59:14 +00:00
| some n => superCommuteCoef q [r.get n] (r.take n) • F (((superCommute q) (ofList [i] 1))
(FreeAlgebra.ι (r.get n)))
2024-12-17 07:15:47 +00:00
@[simp]
2024-12-20 14:05:27 +00:00
lemma superCommuteCenterOrder_none (r : List 𝓕) (i : 𝓕)
2024-12-17 07:15:47 +00:00
{A : Type} [Semiring A] [Algebra A]
2024-12-20 14:05:27 +00:00
(F : FreeAlgebra 𝓕 →ₐ[] A) :
2024-12-17 07:15:47 +00:00
superCommuteCenterOrder q r i F none = 1 := by
simp [superCommuteCenterOrder]
open HepLean.List
2024-12-20 14:05:27 +00:00
lemma le_all_mul_koszulOrder_ofList_expand [IsTotal 𝓕 le] [IsTrans 𝓕 le] (r : List 𝓕) (x : )
(i : 𝓕) (hi : ∀ (j : 𝓕), le j i)
2024-12-17 07:15:47 +00:00
{A : Type} [Semiring A] [Algebra A]
2024-12-20 14:05:27 +00:00
(F : FreeAlgebra 𝓕 →ₐ[] A) [OperatorMap q le F] :
F (FreeAlgebra.ι i * koszulOrder q le (ofList r x)) =
2024-12-19 12:59:14 +00:00
∑ n, superCommuteCenterOrder q r i F n *
2024-12-20 14:05:27 +00:00
F ((koszulOrder q le) (ofList (optionEraseZ r i n) x)) := by
2024-12-17 07:15:47 +00:00
rw [le_all_mul_koszulOrder_ofList]
2024-12-15 12:42:50 +00:00
conv_lhs =>
rhs
2024-12-17 07:15:47 +00:00
rw [ofList_singleton]
rw [superCommute_koszulOrder_le_ofList]
simp only [List.get_eq_getElem, Fintype.sum_option, superCommuteCenterOrder_none, one_mul]
2024-12-15 12:42:50 +00:00
congr
2024-12-17 07:15:47 +00:00
· rw [← ofList_singleton, ← ofList_pair]
simp only [List.singleton_append, one_mul]
rfl
· funext n
simp only [superCommuteCenterOrder, List.get_eq_getElem, Algebra.smul_mul_assoc]
rfl
exact fun j => hi j
2024-12-20 14:05:27 +00:00
lemma le_all_mul_koszulOrder_ofListLift_expand {f : 𝓕 → Type} [∀ i, Fintype (f i)]
(r : List 𝓕) (x : )
(le : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le]
[IsTotal (Σ i, f i) le] [IsTrans (Σ i, f i) le]
(i : (Σ i, f i)) (hi : ∀ (j : (Σ i, f i)), le j i)
2024-12-17 07:15:47 +00:00
{A : Type} [Semiring A] [Algebra A]
2024-12-20 14:05:27 +00:00
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le F] :
F (ofList [i] 1 * koszulOrder (fun i => q i.1) le (ofListLift f r x)) =
F ((koszulOrder (fun i => q i.fst) le) (ofList [i] 1 * ofListLift f r x)) +
2024-12-17 07:15:47 +00:00
∑ n : (Fin r.length), superCommuteCoef q [r.get n] (List.take (↑n) r) •
2024-12-19 14:25:09 +00:00
F (((superCommute fun i => q i.fst) (ofList [i] 1)) (ofListLift f [r.get n] 1)) *
2024-12-20 14:05:27 +00:00
F ((koszulOrder (fun i => q i.fst) le) (ofListLift f (r.eraseIdx ↑n) x)) := by
2024-12-17 07:15:47 +00:00
match r with
| [] =>
simp only [map_mul, List.length_nil, Finset.univ_eq_empty, List.get_eq_getElem, List.take_nil,
List.eraseIdx_nil, Algebra.smul_mul_assoc, Finset.sum_empty, add_zero]
2024-12-19 14:25:09 +00:00
rw [ofListLift_empty_smul]
2024-12-17 07:15:47 +00:00
simp only [map_smul, koszulOrder_one, map_one, Algebra.mul_smul_comm, mul_one]
rw [ofList_singleton, koszulOrder_ι]
| r0 :: r =>
2024-12-19 14:25:09 +00:00
rw [ofListLift_expand, map_sum, Finset.mul_sum, map_sum]
2024-12-20 13:57:29 +00:00
let e1 (a : CreateAnnihilateSect f (r0 :: r)) :
2024-12-19 11:23:49 +00:00
Option (Fin a.toList.length) ≃ Option (Fin (r0 :: r).length) :=
2024-12-20 13:57:29 +00:00
Equiv.optionCongr (Fin.castOrderIso (CreateAnnihilateSect.toList_length a)).toEquiv
2024-12-17 07:15:47 +00:00
conv_lhs =>
rhs
intro a
rw [ofList_singleton, le_all_mul_koszulOrder_ofList_expand _ _ _ _ _ hi]
rw [← (e1 a).symm.sum_comp]
rhs
intro n
rw [Finset.sum_comm]
2024-12-19 12:59:14 +00:00
simp only [Fintype.sum_option]
2024-12-17 07:15:47 +00:00
congr 1
· simp only [List.length_cons, List.get_eq_getElem, superCommuteCenterOrder,
Equiv.optionCongr_symm, OrderIso.toEquiv_symm, Fin.symm_castOrderIso, Equiv.optionCongr_apply,
RelIso.coe_fn_toEquiv, Option.map_none', optionEraseZ, one_mul, e1]
rw [← map_sum, Finset.mul_sum, ← map_sum]
apply congrArg
apply congrArg
congr
funext x
rw [ofList_cons_eq_ofList]
· congr
funext n
2024-12-20 13:57:29 +00:00
rw [← (CreateAnnihilateSect.extractEquiv n).symm.sum_comp]
2024-12-17 07:15:47 +00:00
simp only [List.get_eq_getElem, List.length_cons, Equiv.optionCongr_symm, OrderIso.toEquiv_symm,
Fin.symm_castOrderIso, Equiv.optionCongr_apply, RelIso.coe_fn_toEquiv, Option.map_some',
Fin.castOrderIso_apply, Algebra.smul_mul_assoc, e1]
erw [Finset.sum_product]
2024-12-20 13:57:29 +00:00
have h1 (a0 : f (r0 :: r)[↑n]) (a : CreateAnnihilateSect f ((r0 :: r).eraseIdx ↑n)) :
2024-12-19 12:59:14 +00:00
superCommuteCenterOrder (fun i => q i.fst)
2024-12-20 13:57:29 +00:00
((CreateAnnihilateSect.extractEquiv n).symm (a0, a)).toList i F
2024-12-19 12:59:14 +00:00
(some (Fin.cast (by simp) n)) =
superCommuteCoef q [(r0 :: r).get n] (List.take (↑n) (r0 :: r)) •
F (((superCommute fun i => q i.fst) (ofList [i] 1))
(FreeAlgebra.ι ⟨(r0 :: r).get n, a0⟩)) := by
2024-12-17 07:15:47 +00:00
simp only [superCommuteCenterOrder, List.get_eq_getElem, List.length_cons, Fin.coe_cast]
2024-12-20 13:57:29 +00:00
erw [CreateAnnihilateSect.extractEquiv_symm_toList_get_same]
2024-12-17 07:15:47 +00:00
have hsc : superCommuteCoef (fun i => q i.fst) [⟨(r0 :: r).get n, a0⟩]
2024-12-20 13:57:29 +00:00
(List.take (↑n) ((CreateAnnihilateSect.extractEquiv n).symm (a0, a)).toList) =
2024-12-19 12:59:14 +00:00
superCommuteCoef q [(r0 :: r).get n] (List.take (↑n) ((r0 :: r))) := by
2024-12-17 07:15:47 +00:00
simp only [superCommuteCoef, List.get_eq_getElem, List.length_cons, Fin.isValue,
2024-12-20 13:57:29 +00:00
CreateAnnihilateSect.toList_grade_take]
2024-12-17 07:15:47 +00:00
rfl
erw [hsc]
rfl
conv_lhs =>
rhs
intro a0
rhs
intro a
erw [h1]
conv_lhs =>
rhs
intro a0
rw [← Finset.mul_sum]
conv_lhs =>
rhs
intro a0
2024-12-19 09:48:35 +00:00
enter [2, 2]
2024-12-17 07:15:47 +00:00
intro a
2024-12-19 11:23:49 +00:00
simp [optionEraseZ]
2024-12-20 10:47:34 +00:00
enter [2, 2, 1]
2024-12-20 13:57:29 +00:00
rw [← CreateAnnihilateSect.eraseIdx_toList]
erw [CreateAnnihilateSect.extractEquiv_symm_eraseIdx]
2024-12-17 07:15:47 +00:00
rw [← Finset.sum_mul]
conv_lhs =>
lhs
rw [← Finset.smul_sum]
2024-12-19 14:25:09 +00:00
erw [← map_sum, ← map_sum, ← ofListLift_singleton_one]
2024-12-17 07:15:47 +00:00
conv_lhs =>
rhs
rw [← map_sum, ← map_sum]
simp only [List.get_eq_getElem, List.length_cons, Equiv.symm_apply_apply,
Algebra.smul_mul_assoc]
2024-12-19 14:25:09 +00:00
erw [← ofListLift_expand]
2024-12-17 07:15:47 +00:00
simp only [List.get_eq_getElem, List.length_cons, Algebra.smul_mul_assoc]
2024-12-15 12:42:50 +00:00
end
end Wick