PhysLean/HepLean/SpaceTime/LorentzTensor/Basic.lean

827 lines
33 KiB
Text
Raw Normal View History

2024-07-25 16:57:57 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.LinearAlgebra.PiTensorProduct
import Mathlib.RepresentationTheory.Basic
/-!
# Structure of Lorentz Tensors
In this file we set up the basic structures we will use to define Lorentz tensors.
## References
-- For modular operads see: [Raynor][raynor2021graphical]
-/
noncomputable section
open TensorProduct
variable {R : Type} [CommSemiring R]
2024-07-26 14:43:20 -04:00
/-- An initial structure specifying a tensor system (e.g. a system in which you can
define real Lorentz tensors). -/
2024-07-25 16:57:57 -04:00
structure PreTensorStructure (R : Type) [CommSemiring R] where
2024-07-26 14:43:20 -04:00
/-- The allowed colors of indices.
For example for a real Lorentz tensor these are `{up, down}`. -/
2024-07-25 16:57:57 -04:00
Color : Type
2024-07-26 14:54:09 -04:00
/-- To each color we associate a module. -/
2024-07-25 16:57:57 -04:00
ColorModule : Color → Type
2024-07-26 15:41:26 -04:00
/-- A map taking every color to its dual color. -/
2024-07-25 16:57:57 -04:00
τ : Color → Color
2024-07-26 15:41:26 -04:00
/-- The map `τ` is an involution. -/
2024-07-25 16:57:57 -04:00
τ_involutive : Function.Involutive τ
2024-07-26 15:41:26 -04:00
/-- Each `ColorModule` has the structure of an additive commutative monoid. -/
2024-07-25 16:57:57 -04:00
colorModule_addCommMonoid : ∀ μ, AddCommMonoid (ColorModule μ)
2024-07-26 15:41:26 -04:00
/-- Each `ColorModule` has the structure of a module over `R`. -/
2024-07-25 16:57:57 -04:00
colorModule_module : ∀ μ, Module R (ColorModule μ)
2024-07-26 15:41:26 -04:00
/-- The contraction of a vector with a vector with dual color. -/
2024-07-25 16:57:57 -04:00
contrDual : ∀ μ, ColorModule μ ⊗[R] ColorModule (τ μ) →ₗ[R] R
namespace PreTensorStructure
variable (𝓣 : PreTensorStructure R)
2024-07-26 14:43:20 -04:00
variable {d : } {X Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
2024-07-26 14:54:09 -04:00
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W]
2024-07-26 15:41:26 -04:00
{cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color}
{cW : W → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
2024-07-25 16:57:57 -04:00
instance : AddCommMonoid (𝓣.ColorModule μ) := 𝓣.colorModule_addCommMonoid μ
instance : Module R (𝓣.ColorModule μ) := 𝓣.colorModule_module μ
2024-07-26 15:41:26 -04:00
/-- The type of tensors given a map from an indexing set `X` to the type of colors,
specifying the color of that index. -/
2024-07-26 14:54:09 -04:00
def Tensor (c : X → 𝓣.Color) : Type := ⨂[R] x, 𝓣.ColorModule (c x)
2024-07-25 16:57:57 -04:00
2024-07-26 15:41:26 -04:00
instance : AddCommMonoid (𝓣.Tensor cX) :=
PiTensorProduct.instAddCommMonoid fun i => 𝓣.ColorModule (cX i)
2024-07-25 16:57:57 -04:00
2024-07-26 15:41:26 -04:00
instance : Module R (𝓣.Tensor cX) := PiTensorProduct.instModule
2024-07-25 16:57:57 -04:00
2024-07-26 15:41:26 -04:00
/-- Equivalence of `ColorModule` given an equality of colors. -/
2024-07-25 16:57:57 -04:00
def colorModuleCast (h : μ = ν) : 𝓣.ColorModule μ ≃ₗ[R] 𝓣.ColorModule ν where
toFun x := Equiv.cast (congrArg 𝓣.ColorModule h) x
invFun x := (Equiv.cast (congrArg 𝓣.ColorModule h)).symm x
map_add' x y := by
subst h
rfl
map_smul' x y := by
subst h
rfl
2024-07-26 15:41:26 -04:00
left_inv x := Equiv.symm_apply_apply (Equiv.cast (congrArg 𝓣.ColorModule h)) x
right_inv x := Equiv.apply_symm_apply (Equiv.cast (congrArg 𝓣.ColorModule h)) x
2024-07-25 16:57:57 -04:00
2024-07-26 15:41:26 -04:00
lemma tensorProd_piTensorProd_ext {M : Type} [AddCommMonoid M] [Module R M]
{f g : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY →ₗ[R] M}
2024-07-26 14:43:20 -04:00
(h : ∀ p q, f (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q)
= g (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q)) : f = g := by
apply TensorProduct.ext'
refine fun x ↦
PiTensorProduct.induction_on' x ?_ (by
intro a b hx hy y
simp [map_add, add_tmul, hx, hy])
intro rx fx
refine fun y ↦
PiTensorProduct.induction_on' y ?_ (by
intro a b hx hy
simp at hx hy
simp [map_add, tmul_add, hx, hy])
intro ry fy
2024-07-26 15:41:26 -04:00
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, LinearMapClass.map_smul]
2024-07-26 14:43:20 -04:00
apply congrArg
2024-07-26 15:41:26 -04:00
simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul]
exact congrArg (HSMul.hSMul rx) (h fx fy)
2024-07-26 14:43:20 -04:00
2024-07-25 16:57:57 -04:00
/-!
## Mapping isomorphisms
-/
2024-07-26 15:41:26 -04:00
/-- An linear equivalence of tensor spaces given a color-preserving equivalence of indexing sets. -/
2024-07-25 16:57:57 -04:00
def mapIso {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = d ∘ e) :
𝓣.Tensor c ≃ₗ[R] 𝓣.Tensor d :=
(PiTensorProduct.reindex R _ e) ≪≫ₗ
(PiTensorProduct.congr (fun y => 𝓣.colorModuleCast (by rw [h]; simp)))
2024-07-26 15:41:26 -04:00
lemma mapIso_trans_cond {e : X ≃ Y} {e' : Y ≃ Z} (h : cX = cY ∘ e) (h' : cY = cZ ∘ e') :
cX = cZ ∘ (e.trans e') := by
2024-07-25 16:57:57 -04:00
funext a
subst h h'
simp
@[simp]
2024-07-26 15:41:26 -04:00
lemma mapIso_trans (e : X ≃ Y) (e' : Y ≃ Z) (h : cX = cY ∘ e) (h' : cY = cZ ∘ e') :
2024-07-25 16:57:57 -04:00
(𝓣.mapIso e h ≪≫ₗ 𝓣.mapIso e' h') = 𝓣.mapIso (e.trans e') (𝓣.mapIso_trans_cond h h') := by
refine LinearEquiv.toLinearMap_inj.mp ?_
apply PiTensorProduct.ext
apply MultilinearMap.ext
intro x
simp only [mapIso, LinearMap.compMultilinearMap_apply, LinearEquiv.coe_coe,
LinearEquiv.trans_apply, PiTensorProduct.reindex_tprod, Equiv.symm_trans_apply]
change (PiTensorProduct.congr fun y => 𝓣.colorModuleCast (_))
2024-07-26 15:41:26 -04:00
((PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (cY x)) e')
2024-07-25 16:57:57 -04:00
((PiTensorProduct.congr fun y => 𝓣.colorModuleCast (_)) _)) =
(PiTensorProduct.congr fun y => 𝓣.colorModuleCast _)
2024-07-26 15:41:26 -04:00
((PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (cX x)) (e.trans e')) _)
2024-07-25 16:57:57 -04:00
rw [PiTensorProduct.congr_tprod, PiTensorProduct.reindex_tprod,
PiTensorProduct.congr_tprod, PiTensorProduct.reindex_tprod, PiTensorProduct.congr]
simp [colorModuleCast]
@[simp]
2024-07-26 15:41:26 -04:00
lemma mapIso_mapIso (e : X ≃ Y) (e' : Y ≃ Z) (h : cX = cY ∘ e) (h' : cY = cZ ∘ e')
(T : 𝓣.Tensor cX) :
2024-07-25 16:57:57 -04:00
(𝓣.mapIso e' h') (𝓣.mapIso e h T) = 𝓣.mapIso (e.trans e') (𝓣.mapIso_trans_cond h h') T := by
rw [← LinearEquiv.trans_apply, mapIso_trans]
@[simp]
2024-07-26 15:41:26 -04:00
lemma mapIso_symm (e : X ≃ Y) (h : cX = cY ∘ e) :
(𝓣.mapIso e h).symm = 𝓣.mapIso e.symm ((Equiv.eq_comp_symm e cY cX).mpr h.symm) := by
2024-07-25 16:57:57 -04:00
refine LinearEquiv.toLinearMap_inj.mp ?_
apply PiTensorProduct.ext
apply MultilinearMap.ext
intro x
2024-07-26 14:54:09 -04:00
simp [mapIso, LinearMap.compMultilinearMap_apply, LinearEquiv.coe_coe,
2024-07-25 16:57:57 -04:00
LinearEquiv.symm_apply_apply, PiTensorProduct.reindex_tprod]
2024-07-26 15:41:26 -04:00
change (PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (cX x)) e).symm
2024-07-25 16:57:57 -04:00
((PiTensorProduct.congr fun y => 𝓣.colorModuleCast _).symm ((PiTensorProduct.tprod R) x)) =
2024-07-26 15:41:26 -04:00
(PiTensorProduct.congr fun y => 𝓣.colorModuleCast _)
((PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (cY x)) e.symm)
((PiTensorProduct.tprod R) x))
2024-07-25 16:57:57 -04:00
rw [PiTensorProduct.reindex_tprod, PiTensorProduct.congr_tprod, PiTensorProduct.congr_symm_tprod,
LinearEquiv.symm_apply_eq, PiTensorProduct.reindex_tprod]
apply congrArg
funext i
simp only [colorModuleCast, Equiv.cast_symm, LinearEquiv.coe_symm_mk,
Equiv.symm_symm_apply, LinearEquiv.coe_mk]
rw [← Equiv.symm_apply_eq]
simp only [Equiv.cast_symm, Equiv.cast_apply, cast_cast]
apply cast_eq_iff_heq.mpr
rw [Equiv.apply_symm_apply]
@[simp]
2024-07-26 15:41:26 -04:00
lemma mapIso_refl : 𝓣.mapIso (Equiv.refl X) (rfl : cX = cX) = LinearEquiv.refl R _ := by
2024-07-25 16:57:57 -04:00
refine LinearEquiv.toLinearMap_inj.mp ?_
apply PiTensorProduct.ext
apply MultilinearMap.ext
intro x
simp only [mapIso, Equiv.refl_symm, Equiv.refl_apply, PiTensorProduct.reindex_refl,
LinearMap.compMultilinearMap_apply, LinearEquiv.coe_coe, LinearEquiv.trans_apply,
LinearEquiv.refl_apply, LinearEquiv.refl_toLinearMap, LinearMap.id, LinearMap.coe_mk,
AddHom.coe_mk, id_eq]
change (PiTensorProduct.congr fun y => 𝓣.colorModuleCast _) ((PiTensorProduct.tprod R) x) = _
rw [PiTensorProduct.congr_tprod]
rfl
@[simp]
2024-07-26 15:41:26 -04:00
lemma mapIso_tprod {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = d ∘ e)
(f : (i : X) → 𝓣.ColorModule (c i)) : (𝓣.mapIso e h) (PiTensorProduct.tprod R f) =
2024-07-25 16:57:57 -04:00
(PiTensorProduct.tprod R (fun i => 𝓣.colorModuleCast (by rw [h]; simp) (f (e.symm i)))) := by
simp [mapIso]
change (PiTensorProduct.congr fun y => 𝓣.colorModuleCast _)
2024-07-26 15:41:26 -04:00
((PiTensorProduct.reindex R _ e) ((PiTensorProduct.tprod R) f)) = _
2024-07-25 16:57:57 -04:00
rw [PiTensorProduct.reindex_tprod]
2024-07-26 15:41:26 -04:00
exact PiTensorProduct.congr_tprod (fun y => 𝓣.colorModuleCast _) fun i => f (e.symm i)
2024-07-25 16:57:57 -04:00
/-!
2024-07-26 14:43:20 -04:00
## Pure tensors
This section is needed since: `PiTensorProduct.tmulEquiv` is not defined for dependent types.
Hence we need to construct a version of it here.
-/
2024-07-26 15:41:26 -04:00
/-- The type of pure tensors, i.e. of the form `v1 ⊗ v2 ⊗ v3 ⊗ ...`. -/
2024-07-26 14:43:20 -04:00
abbrev PureTensor (c : X → 𝓣.Color) := (x : X) → 𝓣.ColorModule (c x)
2024-07-26 15:41:26 -04:00
/-- A pure tensor in `𝓣.PureTensor (Sum.elim cX cY)` constructed from a pure tensor
in `𝓣.PureTensor cX` and a pure tensor in `𝓣.PureTensor cY`. -/
def elimPureTensor (p : 𝓣.PureTensor cX) (q : 𝓣.PureTensor cY) : 𝓣.PureTensor (Sum.elim cX cY) :=
2024-07-26 14:43:20 -04:00
fun x =>
match x with
| Sum.inl x => p x
| Sum.inr x => q x
@[simp]
2024-07-26 15:41:26 -04:00
lemma elimPureTensor_update_right (p : 𝓣.PureTensor cX) (q : 𝓣.PureTensor cY)
(y : Y) (r : 𝓣.ColorModule (cY y)) : 𝓣.elimPureTensor p (Function.update q y r) =
2024-07-26 14:43:20 -04:00
Function.update (𝓣.elimPureTensor p q) (Sum.inr y) r := by
funext x
match x with
| Sum.inl x => rfl
| Sum.inr x =>
change Function.update q y r x = _
simp only [Function.update, Sum.inr.injEq, Sum.elim_inr]
split_ifs
rename_i h
subst h
simp_all only
rfl
@[simp]
2024-07-26 15:41:26 -04:00
lemma elimPureTensor_update_left (p : 𝓣.PureTensor cX) (q : 𝓣.PureTensor cY)
(x : X) (r : 𝓣.ColorModule (cX x)) : 𝓣.elimPureTensor (Function.update p x r) q =
2024-07-26 14:43:20 -04:00
Function.update (𝓣.elimPureTensor p q) (Sum.inl x) r := by
funext y
match y with
| Sum.inl y =>
change (Function.update p x r) y = _
simp only [Function.update, Sum.inl.injEq, Sum.elim_inl]
split_ifs
rename_i h
subst h
simp_all only
rfl
| Sum.inr y => rfl
2024-07-26 15:41:26 -04:00
/-- The projection of a pure tensor in `𝓣.PureTensor (Sum.elim cX cY)` onto a pure tensor in
`𝓣.PureTensor cX`. -/
def inlPureTensor (p : 𝓣.PureTensor (Sum.elim cX cY)) : 𝓣.PureTensor cX := fun x => p (Sum.inl x)
2024-07-26 14:43:20 -04:00
2024-07-26 15:41:26 -04:00
/-- The projection of a pure tensor in `𝓣.PureTensor (Sum.elim cX cY)` onto a pure tensor in
`𝓣.PureTensor cY`. -/
def inrPureTensor (p : 𝓣.PureTensor (Sum.elim cX cY)) : 𝓣.PureTensor cY := fun y => p (Sum.inr y)
2024-07-26 14:43:20 -04:00
@[simp]
2024-07-26 15:41:26 -04:00
lemma inlPureTensor_update_left [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim cX cY)) (x : X)
(v1 : 𝓣.ColorModule (Sum.elim cX cY (Sum.inl x))) :
𝓣.inlPureTensor (Function.update f (Sum.inl x) v1) =
Function.update (𝓣.inlPureTensor f) x v1 := by
2024-07-26 14:43:20 -04:00
funext y
simp [inlPureTensor, Function.update, Sum.inl.injEq, Sum.elim_inl]
split
next h =>
subst h
simp_all only
2024-07-26 15:41:26 -04:00
rfl
2024-07-26 14:43:20 -04:00
@[simp]
2024-07-26 15:41:26 -04:00
lemma inrPureTensor_update_left [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim cX cY)) (x : X)
(v1 : 𝓣.ColorModule (Sum.elim cX cY (Sum.inl x))) :
2024-07-26 14:43:20 -04:00
𝓣.inrPureTensor (Function.update f (Sum.inl x) v1) = (𝓣.inrPureTensor f) := by
funext x
simp [inrPureTensor, Function.update]
@[simp]
2024-07-26 15:41:26 -04:00
lemma inrPureTensor_update_right [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim cX cY)) (y : Y)
(v1 : 𝓣.ColorModule (Sum.elim cX cY (Sum.inr y))) :
𝓣.inrPureTensor (Function.update f (Sum.inr y) v1) =
Function.update (𝓣.inrPureTensor f) y v1 := by
2024-07-26 14:43:20 -04:00
funext y
simp [inrPureTensor, Function.update, Sum.inl.injEq, Sum.elim_inl]
split
next h =>
subst h
simp_all only
2024-07-26 15:41:26 -04:00
rfl
2024-07-26 14:43:20 -04:00
@[simp]
2024-07-26 15:41:26 -04:00
lemma inlPureTensor_update_right [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim cX cY)) (y : Y)
(v1 : 𝓣.ColorModule (Sum.elim cX cY (Sum.inr y))) :
2024-07-26 14:43:20 -04:00
𝓣.inlPureTensor (Function.update f (Sum.inr y) v1) = (𝓣.inlPureTensor f) := by
funext x
simp [inlPureTensor, Function.update]
2024-07-26 15:41:26 -04:00
/-- The multilinear map taking pure tensors a `𝓣.PureTensor cX` and a pure tensor in
`𝓣.PureTensor cY`, and constructing a tensor in `𝓣.Tensor (Sum.elim cX cY))`. -/
def elimPureTensorMulLin : MultilinearMap R (fun i => 𝓣.ColorModule (cX i))
(MultilinearMap R (fun x => 𝓣.ColorModule (cY x)) (𝓣.Tensor (Sum.elim cX cY))) where
2024-07-26 14:43:20 -04:00
toFun p := {
toFun := fun q => PiTensorProduct.tprod R (𝓣.elimPureTensor p q)
map_add' := fun m x v1 v2 => by
simp [Sum.elim_inl, Sum.elim_inr]
map_smul' := fun m x r v => by
simp [Sum.elim_inl, Sum.elim_inr]}
map_add' p x v1 v2 := by
apply MultilinearMap.ext
intro y
simp
map_smul' p x r v := by
apply MultilinearMap.ext
intro y
simp
/-!
## tensorator
-/
/-! TODO: Replace with dependent type version of `MultilinearMap.domCoprod` when in Mathlib. -/
2024-07-26 15:41:26 -04:00
/-- The multi-linear map taking a pure tensor in `𝓣.PureTensor (Sum.elim cX cY)` and constructing
a vector in `𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY`. -/
def domCoprod : MultilinearMap R (fun x => 𝓣.ColorModule (Sum.elim cX cY x))
(𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY) where
2024-07-26 14:43:20 -04:00
toFun f := (PiTensorProduct.tprod R (𝓣.inlPureTensor f)) ⊗ₜ
(PiTensorProduct.tprod R (𝓣.inrPureTensor f))
map_add' f xy v1 v2:= by
match xy with
| Sum.inl x => simp [← TensorProduct.add_tmul]
| Sum.inr y => simp [← TensorProduct.tmul_add]
map_smul' f xy r p := by
match xy with
| Sum.inl x => simp [TensorProduct.tmul_smul, TensorProduct.smul_tmul]
| Sum.inr y => simp [TensorProduct.tmul_smul, TensorProduct.smul_tmul]
2024-07-26 15:41:26 -04:00
/-- The linear map combining two tensors into a single tensor
via the tensor product i.e. `v1 v2 ↦ v1 ⊗ v2`. -/
def tensoratorSymm : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY →ₗ[R] 𝓣.Tensor (Sum.elim cX cY) := by
2024-07-26 14:43:20 -04:00
refine TensorProduct.lift {
toFun := fun a ↦
PiTensorProduct.lift <|
PiTensorProduct.lift (𝓣.elimPureTensorMulLin) a,
map_add' := fun a b ↦ by simp
map_smul' := fun r a ↦ by simp}
/-! TODO: Replace with dependent type version of `PiTensorProduct.tmulEquiv` when in Mathlib. -/
2024-07-26 15:41:26 -04:00
/-- Splitting a tensor in `𝓣.Tensor (Sum.elim cX cY)` into the tensor product of two tensors. -/
def tensorator : 𝓣.Tensor (Sum.elim cX cY) →ₗ[R] 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY :=
2024-07-26 14:43:20 -04:00
PiTensorProduct.lift 𝓣.domCoprod
2024-07-26 15:41:26 -04:00
/-- An equivalence formed by taking the tensor product of tensors. -/
def tensoratorEquiv (c : X → 𝓣.Color) (d : Y → 𝓣.Color) :
𝓣.Tensor c ⊗[R] 𝓣.Tensor d ≃ₗ[R] 𝓣.Tensor (Sum.elim c d) :=
2024-07-26 14:43:20 -04:00
LinearEquiv.ofLinear (𝓣.tensoratorSymm) (𝓣.tensorator)
(by
apply PiTensorProduct.ext
apply MultilinearMap.ext
intro p
simp [tensorator, tensoratorSymm, domCoprod]
change (PiTensorProduct.lift (_)) ((PiTensorProduct.tprod R) _) =
LinearMap.id ((PiTensorProduct.tprod R) p)
rw [PiTensorProduct.lift.tprod]
simp [elimPureTensorMulLin, elimPureTensor]
2024-07-26 14:54:09 -04:00
change (PiTensorProduct.tprod R) _ = _
2024-07-26 14:43:20 -04:00
apply congrArg
funext x
match x with
| Sum.inl x => rfl
| Sum.inr x => rfl)
(by
apply tensorProd_piTensorProd_ext
intro p q
2024-07-26 14:54:09 -04:00
simp [tensorator, tensoratorSymm]
2024-07-26 15:41:26 -04:00
change (PiTensorProduct.lift 𝓣.domCoprod)
((PiTensorProduct.lift (𝓣.elimPureTensorMulLin p)) ((PiTensorProduct.tprod R) q)) =_
2024-07-26 14:43:20 -04:00
rw [PiTensorProduct.lift.tprod]
simp [elimPureTensorMulLin]
rfl)
@[simp]
2024-07-26 15:41:26 -04:00
lemma tensoratorEquiv_tmul_tprod (p : 𝓣.PureTensor cX) (q : 𝓣.PureTensor cY) :
(𝓣.tensoratorEquiv cX cY) ((PiTensorProduct.tprod R) p ⊗ₜ[R] (PiTensorProduct.tprod R) q) =
2024-07-26 14:43:20 -04:00
(PiTensorProduct.tprod R) (𝓣.elimPureTensor p q) := by
2024-07-26 15:41:26 -04:00
simp only [tensoratorEquiv, tensoratorSymm, tensorator, domCoprod, LinearEquiv.ofLinear_apply,
lift.tmul, LinearMap.coe_mk, AddHom.coe_mk, PiTensorProduct.lift.tprod]
exact PiTensorProduct.lift.tprod q
2024-07-26 14:43:20 -04:00
lemma tensoratorEquiv_mapIso_cond {e : X ≃ Y} {e' : Z ≃ Y} {e'' : W ≃ X}
2024-07-26 15:41:26 -04:00
(h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : bW = cX ∘ e'') :
Sum.elim bW cZ = Sum.elim cX cY ∘ ⇑(e''.sumCongr e') := by
2024-07-26 14:43:20 -04:00
subst h h' h''
funext x
match x with
| Sum.inl x => rfl
| Sum.inr x => rfl
@[simp]
lemma tensoratorEquiv_mapIso (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X)
2024-07-26 15:41:26 -04:00
(h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : bW = cX ∘ e'') :
(TensorProduct.congr (𝓣.mapIso e'' h'') (𝓣.mapIso e' h')) ≪≫ₗ (𝓣.tensoratorEquiv cX cY)
= (𝓣.tensoratorEquiv bW cZ)
2024-07-26 14:54:09 -04:00
≪≫ₗ (𝓣.mapIso (Equiv.sumCongr e'' e') (𝓣.tensoratorEquiv_mapIso_cond h h' h'')) := by
2024-07-26 14:43:20 -04:00
apply LinearEquiv.toLinearMap_inj.mp
apply tensorProd_piTensorProd_ext
intro p q
2024-07-26 15:41:26 -04:00
simp only [LinearEquiv.coe_coe, LinearEquiv.trans_apply, congr_tmul, mapIso_tprod,
tensoratorEquiv_tmul_tprod, Equiv.sumCongr_symm, Equiv.sumCongr_apply]
2024-07-26 14:43:20 -04:00
apply congrArg
funext x
match x with
| Sum.inl x => rfl
| Sum.inr x => rfl
@[simp]
lemma tensoratorEquiv_mapIso_apply (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X)
2024-07-26 15:41:26 -04:00
(h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : cW = cX ∘ e'')
(x : 𝓣.Tensor cW ⊗[R] 𝓣.Tensor cZ) :
(𝓣.tensoratorEquiv cX cY) ((TensorProduct.congr (𝓣.mapIso e'' h'') (𝓣.mapIso e' h')) x) =
(𝓣.mapIso (Equiv.sumCongr e'' e') (𝓣.tensoratorEquiv_mapIso_cond h h' h''))
((𝓣.tensoratorEquiv cW cZ) x) := by
trans ((TensorProduct.congr (𝓣.mapIso e'' h'') (𝓣.mapIso e' h')) ≪≫ₗ
(𝓣.tensoratorEquiv cX cY)) x
2024-07-26 14:43:20 -04:00
rfl
rw [tensoratorEquiv_mapIso]
rfl
exact e
exact h
lemma tensoratorEquiv_mapIso_tmul (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X)
2024-07-26 15:41:26 -04:00
(h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : cW = cX ∘ e'')
(x : 𝓣.Tensor cW) (y : 𝓣.Tensor cZ) :
(𝓣.tensoratorEquiv cX cY) ((𝓣.mapIso e'' h'' x) ⊗ₜ[R] (𝓣.mapIso e' h' y)) =
(𝓣.mapIso (Equiv.sumCongr e'' e') (𝓣.tensoratorEquiv_mapIso_cond h h' h''))
((𝓣.tensoratorEquiv cW cZ) (x ⊗ₜ y)) := by
2024-07-26 14:43:20 -04:00
rw [← tensoratorEquiv_mapIso_apply]
rfl
exact e
exact h
/-!
## Splitting tensors into tensor products
-/
2024-07-26 15:41:26 -04:00
/-- The decomposition of a set into a direct sum based on the image of an injection. -/
2024-07-26 14:43:20 -04:00
def decompEmbedSet (f : Y ↪ X) :
X ≃ {x // x ∈ (Finset.image f Finset.univ)ᶜ} ⊕ Y :=
(Equiv.Set.sumCompl (Set.range ⇑f)).symm.trans <|
(Equiv.sumComm _ _).trans <|
Equiv.sumCongr ((Equiv.subtypeEquivRight (by simp))) <|
(Function.Embedding.toEquivRange f).symm
2024-07-26 15:41:26 -04:00
/-- The restriction of a map from an indexing set to the space to the complement of the image
of an embedding. -/
def decompEmbedColorLeft (c : X → 𝓣.Color) (f : Y ↪ X) :
{x // x ∈ (Finset.image f Finset.univ)ᶜ} → 𝓣.Color :=
2024-07-26 14:43:20 -04:00
(c ∘ (decompEmbedSet f).symm) ∘ Sum.inl
2024-07-26 15:41:26 -04:00
/-- The restriction of a map from an indexing set to the space to the image
of an embedding. -/
2024-07-26 14:54:09 -04:00
def decompEmbedColorRight (c : X → 𝓣.Color) (f : Y ↪ X) : Y → 𝓣.Color :=
2024-07-26 14:43:20 -04:00
(c ∘ (decompEmbedSet f).symm) ∘ Sum.inr
2024-07-26 14:54:09 -04:00
lemma decompEmbed_cond (c : X → 𝓣.Color) (f : Y ↪ X) : c =
(Sum.elim (𝓣.decompEmbedColorLeft c f) (𝓣.decompEmbedColorRight c f)) ∘ decompEmbedSet f := by
2024-07-26 14:43:20 -04:00
simpa [decompEmbedColorLeft, decompEmbedColorRight] using (Equiv.comp_symm_eq _ _ _).mp rfl
2024-07-26 15:41:26 -04:00
/-- Decomposes a tensor into a tensor product of two tensors
one which has indices in the image of the given embedding, and the other has indices in
the complement of that image. -/
2024-07-26 14:43:20 -04:00
def decompEmbed (f : Y ↪ X) :
2024-07-26 15:41:26 -04:00
𝓣.Tensor cX ≃ₗ[R] 𝓣.Tensor (𝓣.decompEmbedColorLeft cX f) ⊗[R] 𝓣.Tensor (cX ∘ f) :=
(𝓣.mapIso (decompEmbedSet f) (𝓣.decompEmbed_cond cX f)) ≪≫ₗ
(𝓣.tensoratorEquiv (𝓣.decompEmbedColorLeft cX f) (𝓣.decompEmbedColorRight cX f)).symm
2024-07-26 14:43:20 -04:00
/-!
2024-07-25 16:57:57 -04:00
## Contraction
-/
2024-07-26 15:41:26 -04:00
/-- A linear map taking tensors mapped with the same index set to the product of paired tensors. -/
def pairProd : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cX2 →ₗ[R]
⨂[R] x, 𝓣.ColorModule (cX x) ⊗[R] 𝓣.ColorModule (cX2 x) :=
2024-07-25 16:57:57 -04:00
TensorProduct.lift (
PiTensorProduct.map₂ (fun x =>
2024-07-26 15:41:26 -04:00
TensorProduct.mk R (𝓣.ColorModule (cX x)) (𝓣.ColorModule (cX2 x))))
2024-07-25 16:57:57 -04:00
lemma mkPiAlgebra_equiv (e : X ≃ Y) :
(PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R X R)) =
(PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R Y R)) ∘ₗ
(PiTensorProduct.reindex R _ e).toLinearMap := by
apply PiTensorProduct.ext
apply MultilinearMap.ext
intro x
simp only [LinearMap.compMultilinearMap_apply, PiTensorProduct.lift.tprod,
MultilinearMap.mkPiAlgebra_apply, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply,
PiTensorProduct.reindex_tprod, Equiv.prod_comp]
2024-07-26 15:41:26 -04:00
/-- Given a tensor in `𝓣.Tensor cX` and a tensor in `𝓣.Tensor (𝓣.τ ∘ cX)`, the element of
`R` formed by contracting all of their indices. -/
def contrAll' : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor (𝓣.τ ∘ cX) →ₗ[R] R :=
2024-07-25 16:57:57 -04:00
(PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R X R)) ∘ₗ
2024-07-26 15:41:26 -04:00
(PiTensorProduct.map (fun x => 𝓣.contrDual (cX x))) ∘ₗ
2024-07-25 16:57:57 -04:00
(𝓣.pairProd)
2024-07-26 15:41:26 -04:00
lemma contrAll'_mapIso_cond {e : X ≃ Y} (h : cX = cY ∘ e) :
𝓣.τ ∘ cY = (𝓣.τ ∘ cX) ∘ ⇑e.symm := by
2024-07-25 16:57:57 -04:00
subst h
2024-07-26 15:41:26 -04:00
exact (Equiv.eq_comp_symm e (𝓣.τ ∘ cY) (𝓣.τ ∘ cY ∘ ⇑e)).mpr rfl
2024-07-25 16:57:57 -04:00
@[simp]
2024-07-26 15:41:26 -04:00
lemma contrAll'_mapIso (e : X ≃ Y) (h : c = cY ∘ e) :
𝓣.contrAll' ∘ₗ
(TensorProduct.congr (𝓣.mapIso e h) (LinearEquiv.refl R _)).toLinearMap =
𝓣.contrAll' ∘ₗ (TensorProduct.congr (LinearEquiv.refl R _)
(𝓣.mapIso e.symm (𝓣.contrAll'_mapIso_cond h))).toLinearMap := by
2024-07-25 16:57:57 -04:00
apply TensorProduct.ext'
refine fun x ↦
PiTensorProduct.induction_on' x ?_ (by
intro a b hx hy y
simp [map_add, add_tmul, hx, hy])
intro rx fx
refine fun y ↦
PiTensorProduct.induction_on' y ?_ (by
intro a b hx hy
simp at hx hy
simp [map_add, tmul_add, hx, hy])
intro ry fy
simp [contrAll']
rw [mkPiAlgebra_equiv e]
apply congrArg
2024-07-26 15:41:26 -04:00
simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply]
2024-07-25 16:57:57 -04:00
apply congrArg
rw [← LinearEquiv.symm_apply_eq]
rw [PiTensorProduct.reindex_symm]
rw [← PiTensorProduct.map_reindex]
subst h
2024-07-26 15:41:26 -04:00
simp only [Equiv.symm_symm_apply, Function.comp_apply]
2024-07-25 16:57:57 -04:00
apply congrArg
rw [pairProd, pairProd]
2024-07-26 15:41:26 -04:00
simp only [Function.comp_apply, lift.tmul, LinearMapClass.map_smul, LinearMap.smul_apply]
2024-07-25 16:57:57 -04:00
apply congrArg
2024-07-26 15:41:26 -04:00
change _ = ((PiTensorProduct.map₂ fun x => TensorProduct.mk R (𝓣.ColorModule (cY (e x)))
(𝓣.ColorModule (𝓣.τ (cY (e x)))))
2024-07-25 16:57:57 -04:00
((PiTensorProduct.tprod R) fx))
((𝓣.mapIso e.symm _) ((PiTensorProduct.tprod R) fy))
rw [mapIso_tprod]
2024-07-26 15:41:26 -04:00
simp only [Equiv.symm_symm_apply, Function.comp_apply]
2024-07-25 16:57:57 -04:00
rw [PiTensorProduct.map₂_tprod_tprod]
2024-07-26 15:41:26 -04:00
change (PiTensorProduct.reindex R (_) e.symm)
(((PiTensorProduct.map₂ _)
2024-07-25 16:57:57 -04:00
((PiTensorProduct.tprod R) fun i => (𝓣.colorModuleCast _) (fx (e.symm i))))
((PiTensorProduct.tprod R) fy)) = _
rw [PiTensorProduct.map₂_tprod_tprod]
2024-07-26 15:41:26 -04:00
simp only [Equiv.symm_symm_apply, Function.comp_apply, mk_apply]
2024-07-25 16:57:57 -04:00
erw [PiTensorProduct.reindex_tprod]
apply congrArg
funext i
2024-07-26 15:41:26 -04:00
simp only [Equiv.symm_symm_apply]
2024-07-25 16:57:57 -04:00
congr
simp [colorModuleCast]
apply cast_eq_iff_heq.mpr
rw [Equiv.symm_apply_apply]
@[simp]
2024-07-26 15:41:26 -04:00
lemma contrAll'_mapIso_tmul (e : X ≃ Y) (h : c = cY ∘ e) (x : 𝓣.Tensor c)
(y : 𝓣.Tensor (𝓣.τ ∘ cY)) : 𝓣.contrAll' ((𝓣.mapIso e h) x ⊗ₜ[R] y) =
𝓣.contrAll' (x ⊗ₜ[R] (𝓣.mapIso e.symm (𝓣.contrAll'_mapIso_cond h) y)) := by
2024-07-26 14:54:09 -04:00
change (𝓣.contrAll' ∘ₗ
2024-07-25 16:57:57 -04:00
(TensorProduct.congr (𝓣.mapIso e h) (LinearEquiv.refl R _)).toLinearMap) (x ⊗ₜ[R] y) = _
rw [contrAll'_mapIso]
rfl
2024-07-26 15:41:26 -04:00
/-- The contraction of all the indices of two tensors with dual colors. -/
2024-07-25 16:57:57 -04:00
def contrAll {c : X → 𝓣.Color} {d : Y → 𝓣.Color}
(e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e) : 𝓣.Tensor c ⊗[R] 𝓣.Tensor d →ₗ[R] R :=
𝓣.contrAll' ∘ₗ (TensorProduct.congr (LinearEquiv.refl _ _)
(𝓣.mapIso e.symm (by subst h; funext a; simp; rw [𝓣.τ_involutive]))).toLinearMap
2024-07-26 15:41:26 -04:00
lemma contrAll_symm_cond {e : X ≃ Y} (h : c = 𝓣.τ ∘ cY ∘ e) :
cY = 𝓣.τ ∘ c ∘ ⇑e.symm := by
2024-07-25 16:57:57 -04:00
subst h
ext1 x
2024-07-26 15:41:26 -04:00
simp only [Function.comp_apply, Equiv.apply_symm_apply]
2024-07-25 16:57:57 -04:00
rw [𝓣.τ_involutive]
lemma contrAll_mapIso_right_cond {e : X ≃ Y} {e' : Z ≃ Y}
2024-07-26 15:41:26 -04:00
(h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') : c = 𝓣.τ ∘ cZ ∘ ⇑(e.trans e'.symm) := by
2024-07-25 16:57:57 -04:00
subst h h'
ext1 x
simp only [Function.comp_apply, Equiv.coe_trans, Equiv.apply_symm_apply]
@[simp]
lemma contrAll_mapIso_right_tmul (e : X ≃ Y) (e' : Z ≃ Y)
2024-07-26 15:41:26 -04:00
(h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (x : 𝓣.Tensor c) (z : 𝓣.Tensor cZ) :
2024-07-25 16:57:57 -04:00
𝓣.contrAll e h (x ⊗ₜ[R] (𝓣.mapIso e' h' z)) =
𝓣.contrAll (e.trans e'.symm) (𝓣.contrAll_mapIso_right_cond h h') (x ⊗ₜ[R] z) := by
rw [contrAll, contrAll]
simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, congr_tmul,
LinearEquiv.refl_apply, mapIso_mapIso]
congr
@[simp]
lemma contrAll_comp_mapIso_right (e : X ≃ Y) (e' : Z ≃ Y)
2024-07-26 15:41:26 -04:00
(h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') : 𝓣.contrAll e h ∘ₗ
2024-07-25 16:57:57 -04:00
(TensorProduct.congr (LinearEquiv.refl R (𝓣.Tensor c)) (𝓣.mapIso e' h')).toLinearMap
= 𝓣.contrAll (e.trans e'.symm) (𝓣.contrAll_mapIso_right_cond h h') := by
apply TensorProduct.ext'
intro x y
exact 𝓣.contrAll_mapIso_right_tmul e e' h h' x y
lemma contrAll_mapIso_left_cond {e : X ≃ Y} {e' : Z ≃ X}
2024-07-26 15:41:26 -04:00
(h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = c ∘ e') : cZ = 𝓣.τ ∘ cY ∘ ⇑(e'.trans e) := by
2024-07-25 16:57:57 -04:00
subst h h'
ext1 x
simp only [Function.comp_apply, Equiv.coe_trans, Equiv.apply_symm_apply]
@[simp]
lemma contrAll_mapIso_left_tmul {e : X ≃ Y} {e' : Z ≃ X}
2024-07-26 15:41:26 -04:00
(h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = c ∘ e') (x : 𝓣.Tensor cZ) (y : 𝓣.Tensor cY) :
2024-07-25 16:57:57 -04:00
𝓣.contrAll e h ((𝓣.mapIso e' h' x) ⊗ₜ[R] y) =
𝓣.contrAll (e'.trans e) (𝓣.contrAll_mapIso_left_cond h h') (x ⊗ₜ[R] y) := by
rw [contrAll, contrAll]
simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, congr_tmul,
LinearEquiv.refl_apply, contrAll'_mapIso_tmul, mapIso_mapIso]
congr
@[simp]
lemma contrAll_mapIso_left {e : X ≃ Y} {e' : Z ≃ X}
2024-07-26 15:41:26 -04:00
(h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = c ∘ e') :
2024-07-25 16:57:57 -04:00
𝓣.contrAll e h ∘ₗ
2024-07-26 15:41:26 -04:00
(TensorProduct.congr (𝓣.mapIso e' h') (LinearEquiv.refl R (𝓣.Tensor cY))).toLinearMap
2024-07-25 16:57:57 -04:00
= 𝓣.contrAll (e'.trans e) (𝓣.contrAll_mapIso_left_cond h h') := by
apply TensorProduct.ext'
intro x y
exact 𝓣.contrAll_mapIso_left_tmul h h' x y
end PreTensorStructure
2024-07-26 15:41:26 -04:00
/-! TODO: Add unit here. -/
/-- A `PreTensorStructure` with the additional constraint that `contrDua` is symmetric. -/
2024-07-25 16:57:57 -04:00
structure TensorStructure (R : Type) [CommSemiring R] extends PreTensorStructure R where
2024-07-26 15:41:26 -04:00
/-- The symmetry condition on `contrDua`. -/
2024-07-25 16:57:57 -04:00
contrDual_symm : ∀ μ,
2024-07-26 14:54:09 -04:00
(contrDual μ) ∘ₗ (TensorProduct.comm R (ColorModule (τ μ)) (ColorModule μ)).toLinearMap =
2024-07-25 16:57:57 -04:00
(contrDual (τ μ)) ∘ₗ (TensorProduct.congr (LinearEquiv.refl _ _)
(toPreTensorStructure.colorModuleCast (by rw[toPreTensorStructure.τ_involutive]))).toLinearMap
namespace TensorStructure
open PreTensorStructure
variable (𝓣 : TensorStructure R)
variable {d : } {X Y Y' Z : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z]
2024-07-26 14:54:09 -04:00
{c c₂ : X → 𝓣.Color} {d : Y → 𝓣.Color} {b : Z → 𝓣.Color} {d' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
2024-07-25 16:57:57 -04:00
end TensorStructure
2024-07-26 15:41:26 -04:00
/-- A `TensorStructure` with a group action. -/
2024-07-25 16:57:57 -04:00
structure GroupTensorStructure (R : Type) [CommSemiring R]
(G : Type) [Group G] extends TensorStructure R where
2024-07-26 15:41:26 -04:00
/-- For each color `μ` a representation of `G` on `ColorModule μ`. -/
2024-07-25 16:57:57 -04:00
repColorModule : (μ : Color) → Representation R G (ColorModule μ)
2024-07-26 15:41:26 -04:00
/-- The contraction of a vector with its dual is invariant under the group action. -/
2024-07-25 16:57:57 -04:00
contrDual_inv : ∀ μ g, contrDual μ ∘ₗ
TensorProduct.map (repColorModule μ g) (repColorModule (τ μ) g) = contrDual μ
namespace GroupTensorStructure
open TensorStructure
open PreTensorStructure
variable {G : Type} [Group G]
variable (𝓣 : GroupTensorStructure R G)
variable {d : } {X Y Y' Z : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z]
2024-07-26 15:41:26 -04:00
{cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
2024-07-25 16:57:57 -04:00
2024-07-26 15:41:26 -04:00
/-- The representation of the group `G` on the vector space of tensors. -/
def rep : Representation R G (𝓣.Tensor cX) where
toFun g := PiTensorProduct.map (fun x => 𝓣.repColorModule (cX x) g)
2024-07-25 16:57:57 -04:00
map_one' := by
simp_all only [_root_.map_one, PiTensorProduct.map_one]
map_mul' g g' := by
simp_all only [_root_.map_mul]
exact PiTensorProduct.map_mul _ _
local infixl:78 " • " => 𝓣.rep
lemma repColorModule_colorModuleCast_apply (h : μ = ν) (g : G) (x : 𝓣.ColorModule μ) :
2024-07-26 15:41:26 -04:00
(𝓣.repColorModule ν g) ((𝓣.colorModuleCast h) x) =
(𝓣.colorModuleCast h) ((𝓣.repColorModule μ g) x) := by
2024-07-25 16:57:57 -04:00
subst h
simp [colorModuleCast]
@[simp]
lemma repColorModule_colorModuleCast (h : μ = ν) (g : G) :
(𝓣.repColorModule ν g) ∘ₗ (𝓣.colorModuleCast h).toLinearMap =
2024-07-26 14:54:09 -04:00
(𝓣.colorModuleCast h).toLinearMap ∘ₗ (𝓣.repColorModule μ g) := by
2024-07-25 16:57:57 -04:00
apply LinearMap.ext
intro x
2024-07-26 14:43:20 -04:00
simp [repColorModule_colorModuleCast_apply]
2024-07-25 16:57:57 -04:00
@[simp]
2024-07-26 15:41:26 -04:00
lemma rep_mapIso (e : X ≃ Y) (h : cX = cY ∘ e) (g : G) :
2024-07-25 16:57:57 -04:00
(𝓣.rep g) ∘ₗ (𝓣.mapIso e h).toLinearMap = (𝓣.mapIso e h).toLinearMap ∘ₗ 𝓣.rep g := by
apply PiTensorProduct.ext
apply MultilinearMap.ext
intro x
2024-07-26 15:41:26 -04:00
simp only [LinearMap.compMultilinearMap_apply, LinearMap.coe_comp, LinearEquiv.coe_coe,
Function.comp_apply]
2024-07-25 16:57:57 -04:00
erw [mapIso_tprod]
2024-07-26 14:43:20 -04:00
simp [rep, repColorModule_colorModuleCast_apply]
2024-07-26 15:41:26 -04:00
change (PiTensorProduct.map fun x => (𝓣.repColorModule (cY x)) g)
2024-07-25 16:57:57 -04:00
((PiTensorProduct.tprod R) fun i => (𝓣.colorModuleCast _) (x (e.symm i))) =
2024-07-26 15:41:26 -04:00
(𝓣.mapIso e h) ((PiTensorProduct.map _) ((PiTensorProduct.tprod R) x))
2024-07-25 16:57:57 -04:00
rw [PiTensorProduct.map_tprod, PiTensorProduct.map_tprod]
rw [mapIso_tprod]
apply congrArg
funext i
subst h
2024-07-26 14:43:20 -04:00
simp [repColorModule_colorModuleCast_apply]
2024-07-25 16:57:57 -04:00
@[simp]
2024-07-26 15:41:26 -04:00
lemma rep_mapIso_apply (e : X ≃ Y) (h : cX = cY ∘ e) (g : G) (x : 𝓣.Tensor cX) :
2024-07-26 14:43:20 -04:00
g • (𝓣.mapIso e h x) = (𝓣.mapIso e h) (g • x) := by
2024-07-25 16:57:57 -04:00
trans ((𝓣.rep g) ∘ₗ (𝓣.mapIso e h).toLinearMap) x
rfl
simp
2024-07-26 14:43:20 -04:00
@[simp]
2024-07-26 15:41:26 -04:00
lemma rep_tprod (g : G) (f : (i : X) → 𝓣.ColorModule (cX i)) :
2024-07-26 14:43:20 -04:00
g • (PiTensorProduct.tprod R f) = PiTensorProduct.tprod R (fun x =>
2024-07-26 15:41:26 -04:00
𝓣.repColorModule (cX x) g (f x)) := by
2024-07-26 14:43:20 -04:00
simp [rep]
2024-07-26 15:41:26 -04:00
change (PiTensorProduct.map _) ((PiTensorProduct.tprod R) f) = _
2024-07-26 14:43:20 -04:00
rw [PiTensorProduct.map_tprod]
2024-07-25 16:57:57 -04:00
2024-07-26 14:43:20 -04:00
/-!
2024-07-25 16:57:57 -04:00
2024-07-26 14:43:20 -04:00
## Group acting on tensor products
2024-07-25 16:57:57 -04:00
2024-07-26 14:43:20 -04:00
-/
2024-07-25 16:57:57 -04:00
2024-07-26 14:43:20 -04:00
lemma rep_tensoratorEquiv (g : G) :
2024-07-26 15:41:26 -04:00
(𝓣.tensoratorEquiv cX cY) ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g)) = 𝓣.rep g ∘ₗ
(𝓣.tensoratorEquiv cX cY).toLinearMap := by
2024-07-26 14:43:20 -04:00
apply tensorProd_piTensorProd_ext
intro p q
2024-07-26 15:41:26 -04:00
simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, map_tmul, rep_tprod,
tensoratorEquiv_tmul_tprod]
2024-07-26 14:43:20 -04:00
apply congrArg
funext x
match x with
| Sum.inl x => rfl
| Sum.inr x => rfl
2024-07-26 15:41:26 -04:00
lemma rep_tensoratorEquiv_apply (g : G) (x : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY) :
(𝓣.tensoratorEquiv cX cY) ((TensorProduct.map (𝓣.rep g) (𝓣.rep g)) x)
= (𝓣.rep g) ((𝓣.tensoratorEquiv cX cY) x) := by
trans ((𝓣.tensoratorEquiv cX cY) ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g))) x
2024-07-26 14:43:20 -04:00
rfl
rw [rep_tensoratorEquiv]
rfl
2024-07-25 16:57:57 -04:00
2024-07-26 15:41:26 -04:00
lemma rep_tensoratorEquiv_tmul (g : G) (x : 𝓣.Tensor cX) (y : 𝓣.Tensor cY) :
(𝓣.tensoratorEquiv cX cY) ((g • x) ⊗ₜ[R] (g • y)) =
g • ((𝓣.tensoratorEquiv cX cY) (x ⊗ₜ[R] y)) := by
2024-07-26 14:43:20 -04:00
nth_rewrite 1 [← rep_tensoratorEquiv_apply]
rfl
/-!
## Group acting on contraction
-/
@[simp]
lemma contrAll_rep {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e) (g : G) :
𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g)) = 𝓣.contrAll e h := by
apply TensorProduct.ext'
refine fun x ↦ PiTensorProduct.induction_on' x ?_ (by
intro a b hx hy y
simp [map_add, add_tmul, hx, hy])
intro rx fx
refine fun y ↦ PiTensorProduct.induction_on' y ?_ (by
intro a b hx hy
simp at hx hy
simp [map_add, tmul_add, hx, hy])
intro ry fy
simp [contrAll, TensorProduct.smul_tmul]
apply congrArg
apply congrArg
simp [contrAll']
apply congrArg
simp [pairProd]
2024-07-26 14:54:09 -04:00
change (PiTensorProduct.map _) ((PiTensorProduct.map₂ _ _) _) =
2024-07-26 14:43:20 -04:00
(PiTensorProduct.map _) ((PiTensorProduct.map₂ _ _) _)
rw [PiTensorProduct.map₂_tprod_tprod, PiTensorProduct.map₂_tprod_tprod, PiTensorProduct.map_tprod,
PiTensorProduct.map_tprod]
2024-07-26 15:41:26 -04:00
simp only [mk_apply]
2024-07-26 14:43:20 -04:00
apply congrArg
funext x
rw [← repColorModule_colorModuleCast_apply]
nth_rewrite 2 [← 𝓣.contrDual_inv (c x) g]
rfl
@[simp]
lemma contrAll_rep_apply {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e)
(g : G) (x : 𝓣.Tensor c ⊗ 𝓣.Tensor d) :
𝓣.contrAll e h (TensorProduct.map (𝓣.rep g) (𝓣.rep g) x) = 𝓣.contrAll e h x := by
change (𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g))) x = _
rw [contrAll_rep]
@[simp]
lemma contrAll_rep_tmul {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e)
(g : G) (x : 𝓣.Tensor c) (y : 𝓣.Tensor d) :
𝓣.contrAll e h ((g • x) ⊗ₜ[R] (g • y)) = 𝓣.contrAll e h (x ⊗ₜ[R] y) := by
nth_rewrite 2 [← contrAll_rep_apply]
rfl
2024-07-25 16:57:57 -04:00
end GroupTensorStructure
end