PhysLean/HepLean/AnomalyCancellation/SM/NoGrav/Basic.lean

96 lines
2.7 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.SM.Basic
/-!
# Anomaly Cancellation in the Standard Model without Gravity
This file defines the system of anaomaly equations for the SM without RHN, and
without the gravitational ACC.
-/
universe v u
namespace SM
open SMCharges
open SMACCs
open BigOperators
/-- The ACC system for the standard model without RHN and without the gravitational ACC. -/
@[simps!]
def SMNoGrav (n : ) : ACCSystem where
numberLinear := 2
linearACCs := fun i =>
match i with
| 0 => @accSU2 n
| 1 => accSU3
numberQuadratic := 0
quadraticACCs := by
intro i
exact Fin.elim0 i
cubicACC := accCube
namespace SMNoGrav
variable {n : }
lemma SU2Sol (S : (SMNoGrav n).LinSols) : accSU2 S.val = 0 := by
have hS := S.linearSol
simp at hS
exact hS 0
lemma SU3Sol (S : (SMNoGrav n).LinSols) : accSU3 S.val = 0 := by
have hS := S.linearSol
simp at hS
exact hS 1
lemma cubeSol (S : (SMNoGrav n).Sols) : accCube S.val = 0 := by
exact S.cubicSol
/-- An element of `charges` which satisfies the linear ACCs
gives us a element of `AnomalyFreeLinear`. -/
def chargeToLinear (S : (SMNoGrav n).charges) (hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0) :
(SMNoGrav n).LinSols :=
⟨S, by
intro i
simp at i
match i with
| 0 => exact hSU2
| 1 => exact hSU3⟩
/-- An element of `AnomalyFreeLinear` which satisfies the quadratic ACCs
gives us a element of `AnomalyFreeQuad`. -/
def linearToQuad (S : (SMNoGrav n).LinSols) : (SMNoGrav n).QuadSols :=
⟨S, by
intro i
exact Fin.elim0 i⟩
/-- An element of `AnomalyFreeQuad` which satisfies the quadratic ACCs
gives us a element of `AnomalyFree`. -/
def quadToAF (S : (SMNoGrav n).QuadSols) (hc : accCube S.val = 0) :
(SMNoGrav n).Sols := ⟨S, hc⟩
/-- An element of `charges` which satisfies the linear and quadratic ACCs
gives us a element of `AnomalyFreeQuad`. -/
def chargeToQuad (S : (SMNoGrav n).charges) (hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0) :
(SMNoGrav n).QuadSols :=
linearToQuad $ chargeToLinear S hSU2 hSU3
/-- An element of `charges` which satisfies the linear, quadratic and cubic ACCs
gives us a element of `AnomalyFree`. -/
def chargeToAF (S : (SMNoGrav n).charges) (hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0)
(hc : accCube S = 0) : (SMNoGrav n).Sols :=
quadToAF (chargeToQuad S hSU2 hSU3) hc
/-- An element of `AnomalyFreeLinear` which satisfies the quadratic and cubic ACCs
gives us a element of `AnomalyFree`. -/
def linearToAF (S : (SMNoGrav n).LinSols)
(hc : accCube S.val = 0) : (SMNoGrav n).Sols :=
quadToAF (linearToQuad S) hc
end SMNoGrav
end SM