PhysLean/HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSol.lean

145 lines
5 KiB
Text
Raw Normal View History

2024-04-18 09:26:45 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
2024-07-12 16:39:44 -04:00
Released under Apache 2.0 license as described in the file LICENSE.
2024-04-18 09:26:45 -04:00
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic
/-!
# Properties of Quad Sols for SM with RHN
We give a series of properties held by solutions to the quadratic equation.
In particular given a quad solution we define a map from linear solutions to quadratic solutions
and show that it is a surjection. The main reference for this is:
- https://arxiv.org/abs/2006.03588
-/
universe v u
namespace SMRHN
namespace PlusU1
open SMνCharges
open SMνACCs
open BigOperators
namespace QuadSol
variable {n : }
variable (C : (PlusU1 n).QuadSols)
lemma add_AFL_quad (S : (PlusU1 n).LinSols) (a b : ) :
accQuad (a • S.val + b • C.val) =
2024-04-22 08:41:50 -04:00
a * (a * accQuad S.val + 2 * b * quadBiLin S.val C.val) := by
2024-04-18 09:26:45 -04:00
erw [BiLinearSymm.toHomogeneousQuad_add, quadSol (b • C)]
rw [quadBiLin.map_smul₁, quadBiLin.map_smul₂]
erw [accQuad.map_smul]
ring
/-- A helper function for what comes later. -/
2024-04-22 08:41:50 -04:00
def α₁ (S : (PlusU1 n).LinSols) : := - 2 * quadBiLin S.val C.val
2024-04-18 09:26:45 -04:00
/-- A helper function for what comes later. -/
def α₂ (S : (PlusU1 n).LinSols) : := accQuad S.val
lemma α₂_AFQ (S : (PlusU1 n).QuadSols) : α₂ S.1 = 0 := quadSol S
lemma accQuad_α₁_α₂ (S : (PlusU1 n).LinSols) :
accQuad ((α₁ C S) • S + α₂ S • C.1).val = 0 := by
erw [add_AFL_quad]
rw [α₁, α₂]
ring
lemma accQuad_α₁_α₂_zero (S : (PlusU1 n).LinSols) (h1 : α₁ C S = 0)
(h2 : α₂ S = 0) (a b : ) : accQuad (a • S + b • C.1).val = 0 := by
erw [add_AFL_quad]
simp [α₁, α₂] at h1 h2
field_simp [h1, h2]
/-- The construction of a `QuadSol` from a `LinSols` in the generic case. -/
def genericToQuad (S : (PlusU1 n).LinSols) :
(PlusU1 n).QuadSols :=
2024-07-12 11:23:02 -04:00
linearToQuad ((α₁ C S) • S + α₂ S • C.1) (accQuad_α₁_α₂ C S)
2024-04-18 09:26:45 -04:00
lemma genericToQuad_on_quad (S : (PlusU1 n).QuadSols) :
genericToQuad C S.1 = (α₁ C S.1) • S := by
apply ACCSystemQuad.QuadSols.ext
change ((α₁ C S.1) • S.val + α₂ S.1 • C.val) = (α₁ C S.1) • S.val
rw [α₂_AFQ]
simp
lemma genericToQuad_neq_zero (S : (PlusU1 n).QuadSols) (h : α₁ C S.1 ≠ 0) :
(α₁ C S.1)⁻¹ • genericToQuad C S.1 = S := by
rw [genericToQuad_on_quad, smul_smul, inv_mul_cancel h, one_smul]
/-- The construction of a `QuadSol` from a `LinSols` in the special case when `α₁ C S = 0` and
`α₂ S = 0`. -/
def specialToQuad (S : (PlusU1 n).LinSols) (a b : ) (h1 : α₁ C S = 0)
(h2 : α₂ S = 0) : (PlusU1 n).QuadSols :=
linearToQuad (a • S + b • C.1) (accQuad_α₁_α₂_zero C S h1 h2 a b)
2024-07-12 11:23:02 -04:00
lemma special_on_quad (S : (PlusU1 n).QuadSols) (h1 : α₁ C S.1 = 0) :
2024-04-18 09:26:45 -04:00
specialToQuad C S.1 1 0 h1 (α₂_AFQ S) = S := by
apply ACCSystemQuad.QuadSols.ext
change (1 • S.val + 0 • C.val) = S.val
simp
/-- The construction of a `QuadSols` from a `LinSols` and two rationals taking account of the
generic and special cases. This function is a surjection. -/
def toQuad : (PlusU1 n).LinSols × × → (PlusU1 n).QuadSols := fun S =>
if h : α₁ C S.1 = 0 ∧ α₂ S.1 = 0 then
specialToQuad C S.1 S.2.1 S.2.2 h.1 h.2
else
S.2.1 • genericToQuad C S.1
/-- A function from `QuadSols` to `LinSols × × ` which is a right inverse to `toQuad`. -/
@[simp]
def toQuadInv : (PlusU1 n).QuadSols → (PlusU1 n).LinSols × × := fun S =>
if α₁ C S.1 = 0 then
(S.1, 1, 0)
else
(S.1, (α₁ C S.1)⁻¹, 0)
lemma toQuadInv_fst (S : (PlusU1 n).QuadSols) :
(toQuadInv C S).1 = S.1 := by
rw [toQuadInv]
split
rfl
rfl
lemma toQuadInv_α₁_α₂ (S : (PlusU1 n).QuadSols) :
α₁ C S.1 = 0 ↔ α₁ C (toQuadInv C S).1 = 0 ∧ α₂ (toQuadInv C S).1 = 0 := by
rw [toQuadInv_fst, α₂_AFQ]
simp
lemma toQuadInv_special (S : (PlusU1 n).QuadSols) (h : α₁ C S.1 = 0) :
specialToQuad C (toQuadInv C S).1 (toQuadInv C S).2.1 (toQuadInv C S).2.2
((toQuadInv_α₁_α₂ C S).mp h).1 ((toQuadInv_α₁_α₂ C S).mp h).2 = S := by
simp only [toQuadInv_fst]
rw [show (toQuadInv C S).2.1 = 1 by rw [toQuadInv, if_pos h]]
rw [show (toQuadInv C S).2.2 = 0 by rw [toQuadInv, if_pos h]]
rw [special_on_quad]
lemma toQuadInv_generic (S : (PlusU1 n).QuadSols) (h : α₁ C S.1 ≠ 0) :
2024-07-12 11:23:02 -04:00
(toQuadInv C S).2.1 • genericToQuad C (toQuadInv C S).1 = S := by
2024-04-18 09:26:45 -04:00
simp only [toQuadInv_fst]
2024-07-12 11:23:02 -04:00
rw [show (toQuadInv C S).2.1 = (α₁ C S.1)⁻¹ by rw [toQuadInv, if_neg h]]
2024-04-18 09:26:45 -04:00
rw [genericToQuad_neq_zero C S h]
lemma toQuad_rightInverse : Function.RightInverse (@toQuadInv n C) (toQuad C) := by
intro S
by_cases h : α₁ C S.1 = 0
rw [toQuad, dif_pos ((toQuadInv_α₁_α₂ C S).mp h)]
exact toQuadInv_special C S h
rw [toQuad, dif_neg ((toQuadInv_α₁_α₂ C S).mpr.mt h)]
exact toQuadInv_generic C S h
theorem toQuad_surjective : Function.Surjective (toQuad C) :=
Function.RightInverse.surjective (toQuad_rightInverse C)
end QuadSol
end PlusU1
end SMRHN