2024-08-02 16:46:20 -04:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
2024-08-02 16:52:04 -04:00
|
|
|
|
import Mathlib.Data.Set.Finite
|
|
|
|
|
import Mathlib.Data.Finset.Sort
|
2024-08-08 16:22:52 -04:00
|
|
|
|
import Mathlib.Logic.Equiv.Fin
|
2024-08-02 16:46:20 -04:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
# Index notation for a type
|
|
|
|
|
|
|
|
|
|
In this file we will define an index of a Lorentz tensor as a
|
|
|
|
|
string satisfying certain properties.
|
|
|
|
|
|
|
|
|
|
For example, the string `ᵘ¹²` is an index of a real Lorentz tensors.
|
|
|
|
|
The first character `ᵘ` specifies the color of the index, and the subsequent characters
|
|
|
|
|
`¹²` specify the id of the index.
|
|
|
|
|
|
|
|
|
|
Strings of indices e.g. `ᵘ¹²ᵤ₄₃`` are defined elsewhere.
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
open Lean
|
|
|
|
|
open String
|
|
|
|
|
|
|
|
|
|
/-- The class defining index notation on a type `X`.
|
|
|
|
|
Normally `X` will be taken as the type of colors of a `TensorStructure`. -/
|
|
|
|
|
class IndexNotation (X : Type) where
|
|
|
|
|
/-- The list of characters describing the index notation e.g.
|
|
|
|
|
`{'ᵘ', 'ᵤ'}` for real tensors. -/
|
|
|
|
|
charList : Finset Char
|
|
|
|
|
/-- An equivalence between `X` (colors of indices) and `charList`.
|
|
|
|
|
This takes every color of index to its notation character. -/
|
|
|
|
|
notaEquiv : X ≃ charList
|
|
|
|
|
|
|
|
|
|
namespace IndexNotation
|
|
|
|
|
|
|
|
|
|
variable (X : Type) [IndexNotation X]
|
|
|
|
|
variable [Fintype X] [DecidableEq X]
|
|
|
|
|
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Lists of characters forming an index
|
|
|
|
|
|
|
|
|
|
Here we define `listCharIndex` and properties thereof.
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
/-- The map taking a color to its notation character. -/
|
|
|
|
|
def nota {X : Type} [IndexNotation X] (x : X) : Char :=
|
|
|
|
|
(IndexNotation.notaEquiv).toFun x
|
|
|
|
|
|
|
|
|
|
/-- A character is a `notation character` if it is in `charList`. -/
|
|
|
|
|
def isNotationChar (c : Char) : Bool :=
|
|
|
|
|
if c ∈ charList X then true else false
|
|
|
|
|
|
|
|
|
|
/-- A character is a numeric superscript if it is e.g. `⁰`, `¹`, etc. -/
|
|
|
|
|
def isNumericSupscript (c : Char) : Bool :=
|
|
|
|
|
c = '¹' ∨ c = '²' ∨ c = '³' ∨ c = '⁴' ∨ c = '⁵' ∨ c = '⁶' ∨ c = '⁷' ∨ c = '⁸' ∨ c = '⁹' ∨ c = '⁰'
|
|
|
|
|
|
|
|
|
|
/-- Given a character `f` which is a notation character, this is true if `c`
|
|
|
|
|
is a subscript when `f` is a subscript or `c` is a superscript when `f` is a
|
|
|
|
|
superscript. -/
|
|
|
|
|
def IsIndexId (f : Char) (c : Char) : Bool :=
|
|
|
|
|
(isSubScriptAlnum f ∧ isNumericSubscript c) ∨
|
|
|
|
|
(¬ isSubScriptAlnum f ∧ isNumericSupscript c)
|
|
|
|
|
|
|
|
|
|
/-- The proposition for a list of characters to be the tail of an index
|
|
|
|
|
e.g. `['¹', '⁷', ...]` -/
|
|
|
|
|
def listCharIndexTail (f : Char) (l : List Char) : Prop :=
|
|
|
|
|
l ≠ [] ∧ List.all l (fun c => IsIndexId f c)
|
|
|
|
|
|
|
|
|
|
instance : Decidable (listCharIndexTail f l) := instDecidableAnd
|
|
|
|
|
|
|
|
|
|
/-- The proposition for a list of characters to be the characters of an index
|
|
|
|
|
e.g. `['ᵘ', '¹', '⁷', ...]` -/
|
|
|
|
|
def listCharIndex (l : List Char) : Prop :=
|
|
|
|
|
if h : l = [] then True
|
|
|
|
|
else
|
|
|
|
|
let sfst := l.head h
|
|
|
|
|
if ¬ isNotationChar X sfst then False
|
|
|
|
|
else
|
|
|
|
|
listCharIndexTail sfst l.tail
|
|
|
|
|
|
|
|
|
|
/-- An auxillary rewrite lemma to prove that `listCharIndex` is decidable. -/
|
|
|
|
|
lemma listCharIndex_iff (l : List Char) : listCharIndex X l
|
|
|
|
|
↔ (if h : l = [] then True else
|
|
|
|
|
let sfst := l.head h
|
|
|
|
|
if ¬ isNotationChar X sfst then False
|
|
|
|
|
else listCharIndexTail sfst l.tail) := by
|
|
|
|
|
rw [listCharIndex]
|
|
|
|
|
|
|
|
|
|
instance : Decidable (listCharIndex X l) :=
|
|
|
|
|
@decidable_of_decidable_of_iff _ _
|
|
|
|
|
(@instDecidableDite _ _ _ _ _ <|
|
|
|
|
|
fun _ => @instDecidableDite _ _ _ _ _ <|
|
|
|
|
|
fun _ => instDecidableListCharIndexTail)
|
|
|
|
|
(listCharIndex_iff X l).symm
|
|
|
|
|
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## The definition of an index and its properties
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
/-- An index is a non-empty string satisfying the condtion `listCharIndex`,
|
|
|
|
|
e.g. `ᵘ¹²` or `ᵤ₄₃` etc. -/
|
|
|
|
|
def Index : Type := {s : String // listCharIndex X s.toList ∧ s.toList ≠ []}
|
|
|
|
|
|
2024-08-06 08:10:47 -04:00
|
|
|
|
instance : DecidableEq (Index X) := Subtype.instDecidableEq
|
|
|
|
|
|
2024-08-02 16:46:20 -04:00
|
|
|
|
namespace Index
|
|
|
|
|
|
|
|
|
|
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
|
|
|
|
|
|
|
|
|
|
/-- Creats an index from a non-empty list of characters satisfying `listCharIndex`. -/
|
|
|
|
|
def ofCharList (l : List Char) (h : listCharIndex X l ∧ l ≠ []) : Index X := ⟨l.asString, h⟩
|
|
|
|
|
|
|
|
|
|
instance : ToString (Index X) := ⟨fun i => i.val⟩
|
|
|
|
|
|
|
|
|
|
/-- Gets the first character in an index e.g. `ᵘ` as an element of `charList X`. -/
|
|
|
|
|
def head (s : Index X) : charList X :=
|
|
|
|
|
⟨s.val.toList.head (s.prop.2), by
|
|
|
|
|
have h := s.prop.1
|
|
|
|
|
have h2 := s.prop.2
|
|
|
|
|
simp [listCharIndex] at h
|
|
|
|
|
simp_all only [toList, ne_eq, Bool.not_eq_true, ↓reduceDIte]
|
|
|
|
|
simpa [isNotationChar] using h.1⟩
|
|
|
|
|
|
|
|
|
|
/-- The color associated to an index. -/
|
|
|
|
|
def toColor (s : Index X) : X := (IndexNotation.notaEquiv).invFun s.head
|
|
|
|
|
|
|
|
|
|
/-- A map from super and subscript numerical characters to the natural numbers,
|
|
|
|
|
returning `0` on all other characters. -/
|
|
|
|
|
def charToNat (c : Char) : Nat :=
|
|
|
|
|
match c with
|
|
|
|
|
| '₀' => 0
|
|
|
|
|
| '₁' => 1
|
|
|
|
|
| '₂' => 2
|
|
|
|
|
| '₃' => 3
|
|
|
|
|
| '₄' => 4
|
|
|
|
|
| '₅' => 5
|
|
|
|
|
| '₆' => 6
|
|
|
|
|
| '₇' => 7
|
|
|
|
|
| '₈' => 8
|
|
|
|
|
| '₉' => 9
|
|
|
|
|
| '⁰' => 0
|
|
|
|
|
| '¹' => 1
|
|
|
|
|
| '²' => 2
|
|
|
|
|
| '³' => 3
|
|
|
|
|
| '⁴' => 4
|
|
|
|
|
| '⁵' => 5
|
|
|
|
|
| '⁶' => 6
|
|
|
|
|
| '⁷' => 7
|
|
|
|
|
| '⁸' => 8
|
|
|
|
|
| '⁹' => 9
|
|
|
|
|
| _ => 0
|
|
|
|
|
|
|
|
|
|
/-- The numerical characters associated with an index. -/
|
|
|
|
|
def tail (s : Index X) : List Char := s.val.toList.tail
|
|
|
|
|
|
|
|
|
|
/-- The natural numbers assocaited with an index. -/
|
|
|
|
|
def tailNat (s : Index X) : List Nat := s.tail.map charToNat
|
|
|
|
|
|
|
|
|
|
/-- The id of an index, as a natural number. -/
|
|
|
|
|
def id (s : Index X) : Nat := s.tailNat.foldl (fun a b => 10 * a + b) 0
|
|
|
|
|
|
|
|
|
|
end Index
|
|
|
|
|
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## List of indices
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
/-- The type of lists of indices. -/
|
2024-08-12 14:14:45 -04:00
|
|
|
|
structure IndexList where
|
|
|
|
|
val : List (Index X)
|
2024-08-02 16:46:20 -04:00
|
|
|
|
|
|
|
|
|
namespace IndexList
|
|
|
|
|
|
|
|
|
|
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
|
|
|
|
|
|
|
|
|
|
variable (l : IndexList X)
|
|
|
|
|
|
|
|
|
|
/-- The number of indices in an index list. -/
|
2024-08-12 14:14:45 -04:00
|
|
|
|
def length : ℕ := l.val.length
|
|
|
|
|
|
|
|
|
|
lemma ext (h : l.val = l2.val) : l = l2 := by
|
|
|
|
|
cases l
|
|
|
|
|
cases l2
|
|
|
|
|
simp_all
|
2024-08-02 16:46:20 -04:00
|
|
|
|
|
|
|
|
|
/-- The map of from `Fin s.numIndices` into colors associated to an index list. -/
|
2024-08-12 14:14:45 -04:00
|
|
|
|
def colorMap : Fin l.length → X :=
|
|
|
|
|
fun i => (l.val.get i).toColor
|
2024-08-02 16:46:20 -04:00
|
|
|
|
|
|
|
|
|
/-- The map of from `Fin s.numIndices` into the natural numbers associated to an index list. -/
|
2024-08-10 09:16:52 -04:00
|
|
|
|
def idMap : Fin l.length → Nat :=
|
2024-08-12 14:14:45 -04:00
|
|
|
|
fun i => (l.val.get i).id
|
2024-08-02 16:46:20 -04:00
|
|
|
|
|
2024-08-10 09:16:52 -04:00
|
|
|
|
lemma idMap_cast {l1 l2 : IndexList X} (h : l1 = l2) (i : Fin l1.length) :
|
2024-08-06 15:43:58 -04:00
|
|
|
|
l1.idMap i = l2.idMap (Fin.cast (by rw [h]) i) := by
|
|
|
|
|
subst h
|
|
|
|
|
rfl
|
|
|
|
|
|
2024-08-02 16:46:20 -04:00
|
|
|
|
/-- Given a list of indices a subset of `Fin l.numIndices × Index X`
|
|
|
|
|
of pairs of positions in `l` and the corresponding item in `l`. -/
|
2024-08-12 14:14:45 -04:00
|
|
|
|
def toPosSet (l : IndexList X) : Set (Fin l.length × Index X) :=
|
|
|
|
|
{(i, l.val.get i) | i : Fin l.length}
|
2024-08-02 16:46:20 -04:00
|
|
|
|
|
|
|
|
|
/-- Equivalence between `toPosSet` and `Fin l.numIndices`. -/
|
2024-08-12 14:14:45 -04:00
|
|
|
|
def toPosSetEquiv (l : IndexList X) : l.toPosSet ≃ Fin l.length where
|
2024-08-02 16:46:20 -04:00
|
|
|
|
toFun := fun x => x.1.1
|
2024-08-12 14:14:45 -04:00
|
|
|
|
invFun := fun x => ⟨(x, l.val.get x), by simp [toPosSet]⟩
|
2024-08-02 16:46:20 -04:00
|
|
|
|
left_inv x := by
|
|
|
|
|
have hx := x.prop
|
|
|
|
|
simp [toPosSet] at hx
|
|
|
|
|
simp only [List.get_eq_getElem]
|
|
|
|
|
obtain ⟨i, hi⟩ := hx
|
|
|
|
|
have hi2 : i = x.1.1 := by
|
|
|
|
|
obtain ⟨val, property⟩ := x
|
|
|
|
|
obtain ⟨fst, snd⟩ := val
|
|
|
|
|
simp_all only [Prod.mk.injEq]
|
|
|
|
|
subst hi2
|
|
|
|
|
simp_all only [Subtype.coe_eta]
|
|
|
|
|
right_inv := by
|
|
|
|
|
intro x
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
lemma toPosSet_is_finite (l : IndexList X) : l.toPosSet.Finite :=
|
|
|
|
|
Finite.intro l.toPosSetEquiv
|
|
|
|
|
|
|
|
|
|
instance : Fintype l.toPosSet where
|
|
|
|
|
elems := Finset.map l.toPosSetEquiv.symm.toEmbedding Finset.univ
|
|
|
|
|
complete := by
|
|
|
|
|
intro x
|
|
|
|
|
simp_all only [Finset.mem_map_equiv, Equiv.symm_symm, Finset.mem_univ]
|
|
|
|
|
|
2024-08-12 14:14:45 -04:00
|
|
|
|
/-- Given a list of indices a finite set of `Fin l.length × Index X`
|
2024-08-02 16:46:20 -04:00
|
|
|
|
of pairs of positions in `l` and the corresponding item in `l`. -/
|
2024-08-12 14:14:45 -04:00
|
|
|
|
def toPosFinset (l : IndexList X) : Finset (Fin l.length × Index X) :=
|
2024-08-02 16:46:20 -04:00
|
|
|
|
l.toPosSet.toFinset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/-- The construction of a list of indices from a map
|
|
|
|
|
from `Fin n` to `Index X`. -/
|
2024-08-12 14:14:45 -04:00
|
|
|
|
def fromFinMap {n : ℕ} (f : Fin n → Index X) : IndexList X where
|
|
|
|
|
val := (Fin.list n).map f
|
2024-08-02 16:46:20 -04:00
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma fromFinMap_numIndices {n : ℕ} (f : Fin n → Index X) :
|
2024-08-12 14:14:45 -04:00
|
|
|
|
(fromFinMap f).length = n := by
|
|
|
|
|
simp [fromFinMap, length]
|
2024-08-02 16:46:20 -04:00
|
|
|
|
|
2024-08-13 16:36:42 -04:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Appending index lists.
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
section append
|
|
|
|
|
|
|
|
|
|
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
|
|
|
|
|
variable (l l2 l3 : IndexList X)
|
|
|
|
|
|
|
|
|
|
instance : HAppend (IndexList X) (IndexList X) (IndexList X) where
|
|
|
|
|
hAppend := fun l l2 => {val := l.val ++ l2.val}
|
|
|
|
|
|
2024-08-14 16:55:13 -04:00
|
|
|
|
@[simp]
|
|
|
|
|
lemma append_length : (l ++ l2).length = l.length + l2.length := by
|
|
|
|
|
simp [IndexList.length]
|
|
|
|
|
exact List.length_append l.val l2.val
|
|
|
|
|
|
2024-08-13 16:36:42 -04:00
|
|
|
|
lemma append_assoc : l ++ l2 ++ l3 = l ++ (l2 ++ l3) := by
|
|
|
|
|
apply ext
|
|
|
|
|
change l.val ++ l2.val ++ l3.val = l.val ++ (l2.val ++ l3.val)
|
|
|
|
|
exact List.append_assoc l.val l2.val l3.val
|
|
|
|
|
|
|
|
|
|
def appendEquiv {l l2 : IndexList X} : Fin l.length ⊕ Fin l2.length ≃ Fin (l ++ l2).length :=
|
|
|
|
|
finSumFinEquiv.trans (Fin.castOrderIso (List.length_append _ _).symm).toEquiv
|
|
|
|
|
|
|
|
|
|
def appendInl : Fin l.length ↪ Fin (l ++ l2).length where
|
|
|
|
|
toFun := appendEquiv ∘ Sum.inl
|
|
|
|
|
inj' := by
|
|
|
|
|
intro i j h
|
|
|
|
|
simp [Function.comp] at h
|
|
|
|
|
exact h
|
|
|
|
|
|
|
|
|
|
def appendInr : Fin l2.length ↪ Fin (l ++ l2).length where
|
|
|
|
|
toFun := appendEquiv ∘ Sum.inr
|
|
|
|
|
inj' := by
|
|
|
|
|
intro i j h
|
|
|
|
|
simp [Function.comp] at h
|
|
|
|
|
exact h
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma appendInl_appendEquiv :
|
|
|
|
|
(l.appendInl l2).trans appendEquiv.symm.toEmbedding =
|
|
|
|
|
{toFun := Sum.inl, inj' := Sum.inl_injective} := by
|
|
|
|
|
ext i
|
|
|
|
|
simp [appendInl]
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma appendInr_appendEquiv :
|
|
|
|
|
(l.appendInr l2).trans appendEquiv.symm.toEmbedding =
|
|
|
|
|
{toFun := Sum.inr, inj' := Sum.inr_injective} := by
|
|
|
|
|
ext i
|
|
|
|
|
simp [appendInr]
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma append_val {l l2 : IndexList X} : (l ++ l2).val = l.val ++ l2.val := by
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma idMap_append_inl {l l2 : IndexList X} (i : Fin l.length) :
|
|
|
|
|
(l ++ l2).idMap (appendEquiv (Sum.inl i)) = l.idMap i := by
|
|
|
|
|
simp [appendEquiv, idMap]
|
|
|
|
|
rw [List.getElem_append_left]
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma idMap_append_inr {l l2 : IndexList X} (i : Fin l2.length) :
|
|
|
|
|
(l ++ l2).idMap (appendEquiv (Sum.inr i)) = l2.idMap i := by
|
|
|
|
|
simp [appendEquiv, idMap, IndexList.length]
|
|
|
|
|
rw [List.getElem_append_right]
|
|
|
|
|
simp
|
|
|
|
|
omega
|
|
|
|
|
omega
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma colorMap_append_inl {l l2 : IndexList X} (i : Fin l.length) :
|
|
|
|
|
(l ++ l2).colorMap (appendEquiv (Sum.inl i)) = l.colorMap i := by
|
|
|
|
|
simp [appendEquiv, colorMap, IndexList.length]
|
|
|
|
|
rw [List.getElem_append_left]
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma colorMap_append_inl' :
|
|
|
|
|
(l ++ l2).colorMap ∘ appendEquiv ∘ Sum.inl = l.colorMap := by
|
|
|
|
|
funext i
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma colorMap_append_inr {l l2 : IndexList X} (i : Fin l2.length) :
|
|
|
|
|
(l ++ l2).colorMap (appendEquiv (Sum.inr i)) = l2.colorMap i := by
|
|
|
|
|
simp [appendEquiv, colorMap, IndexList.length]
|
|
|
|
|
rw [List.getElem_append_right]
|
|
|
|
|
simp
|
|
|
|
|
omega
|
|
|
|
|
omega
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma colorMap_append_inr' :
|
|
|
|
|
(l ++ l2).colorMap ∘ appendEquiv ∘ Sum.inr = l2.colorMap := by
|
|
|
|
|
funext i
|
|
|
|
|
simp
|
|
|
|
|
|
2024-08-14 16:55:13 -04:00
|
|
|
|
lemma colorMap_sumELim (l1 l2 : IndexList X) :
|
|
|
|
|
Sum.elim l1.colorMap l2.colorMap =
|
|
|
|
|
(l1 ++ l2).colorMap ∘ appendEquiv := by
|
|
|
|
|
funext x
|
|
|
|
|
match x with
|
|
|
|
|
| Sum.inl i => simp
|
|
|
|
|
| Sum.inr i => simp
|
|
|
|
|
|
|
|
|
|
|
2024-08-13 16:36:42 -04:00
|
|
|
|
end append
|
2024-08-02 16:46:20 -04:00
|
|
|
|
|
|
|
|
|
end IndexList
|
|
|
|
|
|
|
|
|
|
end IndexNotation
|