66 lines
2 KiB
Text
66 lines
2 KiB
Text
![]() |
/-
|
|||
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
|
Released under Apache 2.0 license.
|
|||
|
Authors: Joseph Tooby-Smith
|
|||
|
-/
|
|||
|
import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic
|
|||
|
import HepLean.AnomalyCancellation.SMNu.PlusU1.FamilyMaps
|
|||
|
import HepLean.AnomalyCancellation.SMNu.PlusU1.PlaneNonSols
|
|||
|
|
|||
|
universe v u
|
|||
|
|
|||
|
namespace SMRHN
|
|||
|
namespace PlusU1
|
|||
|
|
|||
|
open SMνCharges
|
|||
|
open SMνACCs
|
|||
|
open BigOperators
|
|||
|
|
|||
|
def existsPlane (n : ℕ) : Prop := ∃ (B : Fin n → (PlusU1 3).charges),
|
|||
|
LinearIndependent ℚ B ∧ ∀ (f : Fin n → ℚ), (PlusU1 3).isSolution (∑ i, f i • B i)
|
|||
|
|
|||
|
lemma exists_plane_exists_basis {n : ℕ} (hE : existsPlane n) :
|
|||
|
∃ (B : Fin 11 ⊕ Fin n → (PlusU1 3).charges), LinearIndependent ℚ B := by
|
|||
|
obtain ⟨E, hE1, hE2⟩ := hE
|
|||
|
obtain ⟨B, hB1, hB2⟩ := eleven_dim_plane_of_no_sols_exists
|
|||
|
let Y := Sum.elim B E
|
|||
|
use Y
|
|||
|
apply Fintype.linearIndependent_iff.mpr
|
|||
|
intro g hg
|
|||
|
rw [@Fintype.sum_sum_type] at hg
|
|||
|
rw [@add_eq_zero_iff_eq_neg] at hg
|
|||
|
rw [← @Finset.sum_neg_distrib] at hg
|
|||
|
have h1 : ∑ x : Fin n, -(g (Sum.inr x) • Y (Sum.inr x)) =
|
|||
|
∑ x : Fin n, (-g (Sum.inr x)) • Y (Sum.inr x):= by
|
|||
|
apply Finset.sum_congr
|
|||
|
simp
|
|||
|
intro i _
|
|||
|
simp
|
|||
|
rw [h1] at hg
|
|||
|
have h2 : ∑ a₁ : Fin 11, g (Sum.inl a₁) • Y (Sum.inl a₁) = 0 := by
|
|||
|
apply hB2
|
|||
|
erw [hg]
|
|||
|
exact hE2 fun i => -g (Sum.inr i)
|
|||
|
rw [Fintype.linearIndependent_iff] at hB1 hE1
|
|||
|
have h3 : ∀ i, g (Sum.inl i) = 0 := hB1 (fun i => (g (Sum.inl i))) h2
|
|||
|
rw [h2] at hg
|
|||
|
have h4 : ∀ i, - g (Sum.inr i) = 0 := hE1 (fun i => (- g (Sum.inr i))) hg.symm
|
|||
|
simp at h4
|
|||
|
intro i
|
|||
|
match i with
|
|||
|
| Sum.inl i => exact h3 i
|
|||
|
| Sum.inr i => exact h4 i
|
|||
|
|
|||
|
|
|||
|
theorem plane_exists_dim_le_7 {n : ℕ} (hn : existsPlane n) : n ≤ 7 := by
|
|||
|
obtain ⟨B, hB⟩ := exists_plane_exists_basis hn
|
|||
|
have h1 := LinearIndependent.fintype_card_le_finrank hB
|
|||
|
simp at h1
|
|||
|
rw [show FiniteDimensional.finrank ℚ (PlusU1 3).charges = 18 from
|
|||
|
FiniteDimensional.finrank_fin_fun ℚ] at h1
|
|||
|
exact Nat.le_of_add_le_add_left h1
|
|||
|
|
|||
|
|
|||
|
end PlusU1
|
|||
|
end SMRHN
|