PhysLean/HepLean/Lorentz/PauliMatrices/AsTensor.lean

197 lines
11 KiB
Text
Raw Normal View History

2024-10-16 10:39:11 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.OverColor.Basic
2024-11-09 17:35:02 +00:00
import HepLean.Lorentz.Weyl.Two
2024-10-16 10:39:11 +00:00
/-!
## Pauli matrices
-/
namespace PauliMatrix
open Complex
open Lorentz
open Fermion
open TensorProduct
open CategoryTheory.MonoidalCategory
noncomputable section
open Matrix
open MatrixGroups
open Complex
open TensorProduct
/-- The tensor `σ^μ^a^{dot a}` based on the Pauli-matrices as an element of
`complexContr ⊗ leftHanded ⊗ rightHanded`. -/
def asTensor : (complexContr ⊗ leftHanded ⊗ rightHanded).V :=
2024-10-16 10:57:46 +00:00
∑ i, complexContrBasis i ⊗ₜ leftRightToMatrix.symm (σSA i)
2024-10-16 10:39:11 +00:00
/-- The expansion of `asTensor` into complexContrBasis basis vectors . -/
lemma asTensor_expand_complexContrBasis : asTensor =
complexContrBasis (Sum.inl 0) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inl 0))
+ complexContrBasis (Sum.inr 0) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 0))
+ complexContrBasis (Sum.inr 1) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 1))
+ complexContrBasis (Sum.inr 2) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 2)) := by
rfl
/-- The expansion of the pauli matrix `σ₀` in terms of a basis of tensor product vectors. -/
lemma leftRightToMatrix_σSA_inl_0_expand : leftRightToMatrix.symm (σSA (Sum.inl 0)) =
leftBasis 0 ⊗ₜ rightBasis 0 + leftBasis 1 ⊗ₜ rightBasis 1 := by
simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue]
erw [leftRightToMatrix_symm_expand_tmul]
simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ0, of_apply, cons_val', empty_val',
cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, one_smul, zero_smul,
add_zero, head_fin_const, zero_add, CategoryTheory.Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj]
/-- The expansion of the pauli matrix `σ₁` in terms of a basis of tensor product vectors. -/
lemma leftRightToMatrix_σSA_inr_0_expand : leftRightToMatrix.symm (σSA (Sum.inr 0)) =
leftBasis 0 ⊗ₜ rightBasis 1 + leftBasis 1 ⊗ₜ rightBasis 0:= by
simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue]
erw [leftRightToMatrix_symm_expand_tmul]
simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ1, of_apply, cons_val', empty_val',
cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, zero_smul, one_smul,
zero_add, head_fin_const, add_zero, CategoryTheory.Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj]
/-- The expansion of the pauli matrix `σ₂` in terms of a basis of tensor product vectors. -/
lemma leftRightToMatrix_σSA_inr_1_expand : leftRightToMatrix.symm (σSA (Sum.inr 1)) =
-(I • leftBasis 0 ⊗ₜ[] rightBasis 1) + I • leftBasis 1 ⊗ₜ[] rightBasis 0 := by
simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue]
erw [leftRightToMatrix_symm_expand_tmul]
simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ2, of_apply, cons_val', empty_val',
cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, zero_smul, neg_smul,
zero_add, head_fin_const, add_zero]
/-- The expansion of the pauli matrix `σ₃` in terms of a basis of tensor product vectors. -/
lemma leftRightToMatrix_σSA_inr_2_expand : leftRightToMatrix.symm (σSA (Sum.inr 2)) =
leftBasis 0 ⊗ₜ rightBasis 0 - leftBasis 1 ⊗ₜ rightBasis 1 := by
simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue]
erw [leftRightToMatrix_symm_expand_tmul]
simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ3, of_apply, cons_val', empty_val',
cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, one_smul, zero_smul,
add_zero, head_fin_const, neg_smul, zero_add, CategoryTheory.Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj]
rfl
/-- The expansion of `asTensor` into complexContrBasis basis of tensor product vectors. -/
lemma asTensor_expand : asTensor =
complexContrBasis (Sum.inl 0) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 0)
+ complexContrBasis (Sum.inl 0) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 1)
+ complexContrBasis (Sum.inr 0) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 1)
+ complexContrBasis (Sum.inr 0) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 0)
- I • complexContrBasis (Sum.inr 1) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 1)
+ I • complexContrBasis (Sum.inr 1) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 0)
+ complexContrBasis (Sum.inr 2) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 0)
- complexContrBasis (Sum.inr 2) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 1) := by
rw [asTensor_expand_complexContrBasis]
rw [leftRightToMatrix_σSA_inl_0_expand, leftRightToMatrix_σSA_inr_0_expand,
leftRightToMatrix_σSA_inr_1_expand, leftRightToMatrix_σSA_inr_2_expand]
simp only [Action.instMonoidalCategory_tensorObj_V, CategoryTheory.Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
Fin.isValue, tmul_add, tmul_neg, tmul_smul, tmul_sub]
rfl
2024-10-16 10:39:11 +00:00
/-- The tensor `σ^μ^a^{dot a}` based on the Pauli-matrices as a morphism,
`𝟙_ (Rep SL(2,)) ⟶ complexContr ⊗ leftHanded ⊗ rightHanded` manifesting
the invariance under the `SL(2,)` action. -/
def asConsTensor : 𝟙_ (Rep SL(2,)) ⟶ complexContr ⊗ leftHanded ⊗ rightHanded where
hom := ModuleCat.ofHom {
2024-10-16 10:39:11 +00:00
toFun := fun a =>
let a' : := a
a' • asTensor,
map_add' := fun x y => by
simp only [add_smul],
map_smul' := fun m x => by
simp only [smul_smul]
rfl}
comm M := by
refine ModuleCat.hom_ext ?_
refine LinearMap.ext fun x : => ?_
2024-10-16 10:39:11 +00:00
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.hom_comp,
2024-10-16 10:39:11 +00:00
Function.comp_apply]
change x • asTensor =
2024-10-28 08:01:26 +00:00
(TensorProduct.map (complexContr.ρ M)
(TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M))) (x • asTensor)
2024-10-16 10:39:11 +00:00
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
apply congrArg
nth_rewrite 2 [asTensor]
simp only [Action.instMonoidalCategory_tensorObj_V, CategoryTheory.Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
map_sum, map_tmul]
symm
2024-10-16 10:57:46 +00:00
calc _ = ∑ x, ((complexContr.ρ M) (complexContrBasis x) ⊗ₜ[]
2024-11-11 07:22:36 +00:00
leftRightToMatrix.symm (SL2C.toSelfAdjointMap M (σSA x))) := by
2024-10-16 10:39:11 +00:00
refine Finset.sum_congr rfl (fun x _ => ?_)
rw [← leftRightToMatrix_ρ_symm_selfAdjoint]
rfl
_ = ∑ x, ((∑ i, (SL2C.toLorentzGroup M).1 i x • (complexContrBasis i)) ⊗ₜ[]
2024-10-16 10:57:46 +00:00
∑ j, leftRightToMatrix.symm ((SL2C.toLorentzGroup M⁻¹).1 x j • (σSA j))) := by
2024-10-16 10:39:11 +00:00
refine Finset.sum_congr rfl (fun x _ => ?_)
2024-11-11 07:22:36 +00:00
rw [SL2CRep_ρ_basis, SL2C.toSelfAdjointMap_σSA]
2024-10-16 10:39:11 +00:00
simp only [Action.instMonoidalCategory_tensorObj_V, SL2C.toLorentzGroup_apply_coe,
Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton, map_inv, lorentzGroupIsGroup_inv, AddSubgroup.coe_add,
selfAdjoint.val_smul, AddSubgroup.val_finset_sum, map_add, map_sum]
_ = ∑ x, ∑ i, ∑ j, ((SL2C.toLorentzGroup M).1 i x • (complexContrBasis i)) ⊗ₜ[]
2024-10-16 10:57:46 +00:00
leftRightToMatrix.symm.toLinearMap ((SL2C.toLorentzGroup M⁻¹).1 x j • (σSA j)) := by
2024-10-16 10:39:11 +00:00
refine Finset.sum_congr rfl (fun x _ => ?_)
rw [sum_tmul]
refine Finset.sum_congr rfl (fun i _ => ?_)
rw [tmul_sum]
rfl
_ = ∑ x, ∑ i, ∑ j, ((SL2C.toLorentzGroup M).1 i x • (complexContrBasis i)) ⊗ₜ[]
((SL2C.toLorentzGroup M⁻¹).1 x j • leftRightToMatrix.symm ((σSA j))) := by
refine Finset.sum_congr rfl (fun x _ => (Finset.sum_congr rfl (fun i _ =>
2024-10-16 10:57:46 +00:00
(Finset.sum_congr rfl (fun j _ => ?_)))))
2024-10-16 10:39:11 +00:00
simp only [Action.instMonoidalCategory_tensorObj_V, SL2C.toLorentzGroup_apply_coe,
map_inv, lorentzGroupIsGroup_inv, LinearMap.map_smul_of_tower, LinearEquiv.coe_coe,
tmul_smul]
_ = ∑ x, ∑ i, ∑ j, ((SL2C.toLorentzGroup M).1 i x * (SL2C.toLorentzGroup M⁻¹).1 x j)
• ((complexContrBasis i)) ⊗ₜ[] leftRightToMatrix.symm ((σSA j)) := by
refine Finset.sum_congr rfl (fun x _ => (Finset.sum_congr rfl (fun i _ =>
2024-10-16 10:57:46 +00:00
(Finset.sum_congr rfl (fun j _ => ?_)))))
2024-10-16 10:39:11 +00:00
rw [smul_tmul, smul_smul, tmul_smul]
2024-10-16 10:57:46 +00:00
_ = ∑ i, ∑ x, ∑ j, ((SL2C.toLorentzGroup M).1 i x * (SL2C.toLorentzGroup M⁻¹).1 x j)
2024-10-16 10:39:11 +00:00
• ((complexContrBasis i)) ⊗ₜ[] leftRightToMatrix.symm ((σSA j)) := Finset.sum_comm
_ = ∑ i, ∑ j, ∑ x, ((SL2C.toLorentzGroup M).1 i x * (SL2C.toLorentzGroup M⁻¹).1 x j)
• ((complexContrBasis i)) ⊗ₜ[] leftRightToMatrix.symm ((σSA j)) :=
2024-10-16 10:57:46 +00:00
Finset.sum_congr rfl (fun x _ => Finset.sum_comm)
_ = ∑ i, ∑ j, (∑ x, (SL2C.toLorentzGroup M).1 i x * (SL2C.toLorentzGroup M⁻¹).1 x j)
2024-10-16 10:39:11 +00:00
• ((complexContrBasis i)) ⊗ₜ[] leftRightToMatrix.symm ((σSA j)) := by
2024-10-16 10:57:46 +00:00
refine Finset.sum_congr rfl (fun i _ => (Finset.sum_congr rfl (fun j _ => ?_)))
2024-10-16 10:39:11 +00:00
rw [Finset.sum_smul]
2024-10-16 10:57:46 +00:00
_ = ∑ i, ∑ j, ((1 : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ) i j)
2024-10-16 10:39:11 +00:00
• ((complexContrBasis i)) ⊗ₜ[] leftRightToMatrix.symm ((σSA j)) := by
2024-10-16 10:57:46 +00:00
refine Finset.sum_congr rfl (fun i _ => (Finset.sum_congr rfl (fun j _ => ?_)))
2024-10-16 10:39:11 +00:00
congr
change ((SL2C.toLorentzGroup M) * (SL2C.toLorentzGroup M⁻¹)).1 i j = _
rw [← SL2C.toLorentzGroup.map_mul]
simp only [mul_inv_cancel, _root_.map_one, lorentzGroupIsGroup_one_coe]
2024-10-16 10:57:46 +00:00
_ = ∑ i, ((1 : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ) i i)
2024-10-16 10:39:11 +00:00
• ((complexContrBasis i)) ⊗ₜ[] leftRightToMatrix.symm ((σSA i)) := by
refine Finset.sum_congr rfl (fun i _ => ?_)
refine Finset.sum_eq_single i (fun b _ hb => ?_) (fun hb => ?_)
· simp [one_apply_ne' hb]
· simp only [Finset.mem_univ, not_true_eq_false] at hb
_ = asTensor := by
refine Finset.sum_congr rfl (fun i _ => ?_)
simp only [Action.instMonoidalCategory_tensorObj_V, one_apply_eq, one_smul,
CategoryTheory.Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj]
/-- The map `𝟙_ (Rep SL(2,)) ⟶ complexContr ⊗ leftHanded ⊗ rightHanded` corresponding
to Pauli matrices, when evaluated on `1` corresponds to the tensor `PauliMatrix.asTensor`. -/
lemma asConsTensor_apply_one : asConsTensor.hom (1 : ) = asTensor := by
change asConsTensor.hom.hom.toFun (1 : ) = asTensor
simp only [asConsTensor, one_smul]
2024-10-16 10:39:11 +00:00
end
end PauliMatrix