PhysLean/HepLean/PerturbationTheory/FieldOpAlgebra/StaticWickTerm.lean

158 lines
6.9 KiB
Text
Raw Normal View History

2025-02-05 10:01:48 +00:00
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.FieldOpAlgebra.NormalOrder.WickContractions
import HepLean.PerturbationTheory.WickContraction.Sign.InsertNone
import HepLean.PerturbationTheory.WickContraction.Sign.InsertSome
import HepLean.PerturbationTheory.WickContraction.StaticContract
/-!
# Static Wick's terms
-/
open FieldSpecification
variable {𝓕 : FieldSpecification}
namespace WickContraction
variable {n : } (c : WickContraction n)
open HepLean.List
open FieldOpAlgebra
open FieldStatistic
noncomputable section
2025-02-07 09:56:37 +00:00
/-- For a list `φs` of `𝓕.FieldOp`, and a Wick contraction `φsΛ` of `φs`, the element
of `𝓕.FieldOpAlgebra`, `φsΛ.staticWickTerm` is defined as
`φsΛ.sign • φsΛ.staticContract * 𝓝([φsΛ]ᵘᶜ)`.
This is term which appears in the static version Wick's theorem. -/
2025-02-05 10:01:48 +00:00
def staticWickTerm {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : 𝓕.FieldOpAlgebra :=
φsΛ.sign • φsΛ.staticContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)
/-- For the empty list `[]` of `𝓕.FieldOp`, the `staticWickTerm` of the Wick contraction
corresponding to the empty set `∅` (the only Wick contraction of `[]`) is `1`. -/
2025-02-05 10:01:48 +00:00
@[simp]
2025-02-06 13:31:59 +00:00
lemma staticWickTerm_empty_nil :
2025-02-05 10:01:48 +00:00
staticWickTerm (empty (n := ([] : List 𝓕.FieldOp).length)) = 1 := by
rw [staticWickTerm, uncontractedListGet, nil_zero_uncontractedList]
simp [sign, empty, staticContract]
/--
2025-02-07 09:56:37 +00:00
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, and an element `φ` of
`𝓕.FieldOp`, then `(φsΛ ↩Λ φ 0 none).staticWickTerm` is equal to
2025-02-07 09:56:37 +00:00
`φsΛ.sign • φsΛ.staticWickTerm * 𝓝(φ :: [φsΛ]ᵘᶜ)`
The proof of this result relies on
- `staticContract_insert_none` to rewrite the static contract.
- `sign_insert_none_zero` to rewrite the sign.
-/
2025-02-05 10:01:48 +00:00
lemma staticWickTerm_insert_zero_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) :
(φsΛ ↩Λ φ 0 none).staticWickTerm =
φsΛ.sign • φsΛ.staticContract * 𝓝(ofFieldOpList (φ :: [φsΛ]ᵘᶜ)) := by
symm
erw [staticWickTerm, sign_insert_none_zero]
simp only [staticContract_insert_none, insertAndContract_uncontractedList_none_zero,
2025-02-05 10:01:48 +00:00
Algebra.smul_mul_assoc]
2025-02-07 09:56:37 +00:00
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
`𝓕.FieldOp`, and a `k` in `φsΛ.uncontracted`, `(φsΛ ↩Λ φ 0 (some k)).wickTerm` is equal
to the product of
- the sign `𝓢(φ, φ₀…φᵢ₋₁) `
- the sign `φsΛ.sign`
- `φsΛ.staticContract`
- `s • [anPart φ, ofFieldOp φs[k]]ₛ` where `s` is the sign associated with moving `φ` through
uncontracted fields in `φ₀…φₖ₋₁`
- the normal ordering `𝓝([φsΛ]ᵘᶜ.erase (uncontractedFieldOpEquiv φs φsΛ k))`.
2025-02-10 10:21:57 +00:00
The proof of this result ultimately relies on
2025-02-07 09:56:37 +00:00
- `staticContract_insert_some` to rewrite static contractions.
- `normalOrder_uncontracted_some` to rewrite normal orderings.
- `sign_insert_some_zero` to rewrite signs.
-/
2025-02-05 10:01:48 +00:00
lemma staticWickTerm_insert_zero_some (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (k : { x // x ∈ φsΛ.uncontracted }) :
(φsΛ ↩Λ φ 0 k).staticWickTerm =
sign φs φsΛ • (↑φsΛ.staticContract *
(contractStateAtIndex φ [φsΛ]ᵘᶜ ((uncontractedFieldOpEquiv φs φsΛ) (some k)) *
𝓝(ofFieldOpList (optionEraseZ [φsΛ]ᵘᶜ φ (uncontractedFieldOpEquiv φs φsΛ k))))) := by
symm
rw [staticWickTerm, normalOrder_uncontracted_some]
simp only [← mul_assoc]
rw [← smul_mul_assoc]
congr 1
rw [staticContract_insert_some_of_lt]
2025-02-05 10:01:48 +00:00
swap
· simp
rw [smul_smul]
by_cases hn : GradingCompliant φs φsΛ ∧ (𝓕|>ₛφ) = (𝓕|>ₛ φs[k.1])
· congr 1
swap
· rw [Subalgebra.mem_center_iff.mp φsΛ.staticContract.2]
· rw [sign_insert_some_zero _ _ _ _ hn, mul_comm, ← mul_assoc]
simp
2025-02-05 10:01:48 +00:00
· simp only [Fin.getElem_fin, not_and] at hn
by_cases h0 : ¬ GradingCompliant φs φsΛ
· rw [staticContract_of_not_gradingCompliant]
simp only [ZeroMemClass.coe_zero, zero_mul, smul_zero, instCommGroup.eq_1, mul_zero]
exact h0
· simp_all only [Finset.mem_univ, not_not, instCommGroup.eq_1, forall_const]
have h1 : contractStateAtIndex φ [φsΛ]ᵘᶜ (uncontractedFieldOpEquiv φs φsΛ k) = 0 := by
simp only [contractStateAtIndex, uncontractedFieldOpEquiv, Equiv.optionCongr_apply,
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply,
instCommGroup.eq_1, Fin.coe_cast, Fin.getElem_fin, smul_eq_zero]
right
simp only [uncontractedListGet, List.getElem_map,
uncontractedList_getElem_uncontractedIndexEquiv_symm, List.get_eq_getElem]
rw [superCommute_anPart_ofFieldOpF_diff_grade_zero]
exact hn
rw [h1]
simp
/--
2025-02-07 09:56:37 +00:00
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, the following relation
holds
`φ * φsΛ.staticWickTerm = ∑ k, (φsΛ ↩Λ φ 0 k).staticWickTerm`
2025-02-07 09:56:37 +00:00
where the sum is over all `k` in `Option φsΛ.uncontracted`, so `k` is either `none` or `some k`.
The proof of proceeds as follows:
2025-02-06 13:31:59 +00:00
- `ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum` is used to expand `φ 𝓝([φsΛ]ᵘᶜ)` as
2025-02-07 09:56:37 +00:00
a sum over `k` in `Option φsΛ.uncontracted` of terms involving `[anPart φ, φs[k]]ₛ`.
- Then `staticWickTerm_insert_zero_none` and `staticWickTerm_insert_zero_some` are
used to equate terms.
-/
2025-02-05 10:01:48 +00:00
lemma mul_staticWickTerm_eq_sum (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) :
ofFieldOp φ * φsΛ.staticWickTerm =
∑ (k : Option φsΛ.uncontracted), (φsΛ ↩Λ φ 0 k).staticWickTerm := by
trans (φsΛ.sign • φsΛ.staticContract * (ofFieldOp φ * normalOrder (ofFieldOpList [φsΛ]ᵘᶜ)))
· have ht := Subalgebra.mem_center_iff.mp (Subalgebra.smul_mem (Subalgebra.center _)
(φsΛ.staticContract).2 φsΛ.sign)
conv_rhs => rw [← mul_assoc, ← ht]
simp [mul_assoc, staticWickTerm]
rw [ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum]
rw [Finset.mul_sum]
rw [uncontractedFieldOpEquiv_list_sum]
refine Finset.sum_congr rfl (fun n _ => ?_)
match n with
| none =>
simp only [contractStateAtIndex, uncontractedFieldOpEquiv, Equiv.optionCongr_apply,
Equiv.coe_trans, Option.map_none', one_mul, Algebra.smul_mul_assoc, Nat.succ_eq_add_one,
Fin.zero_eta, Fin.val_zero, List.insertIdx_zero, staticContract_insert_none,
2025-02-05 10:01:48 +00:00
insertAndContract_uncontractedList_none_zero]
rw [staticWickTerm_insert_zero_none]
simp only [Algebra.smul_mul_assoc]
rfl
| some n =>
simp only [Algebra.smul_mul_assoc, Nat.succ_eq_add_one, Fin.zero_eta, Fin.val_zero,
List.insertIdx_zero]
rw [staticWickTerm_insert_zero_some]
end
end WickContraction