PhysLean/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder.lean

609 lines
25 KiB
Text
Raw Normal View History

2025-01-27 06:20:25 +00:00
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
2025-02-03 12:12:36 +00:00
import HepLean.PerturbationTheory.FieldOpFreeAlgebra.NormalOrder
import HepLean.PerturbationTheory.FieldOpAlgebra.SuperCommute
2025-01-27 06:20:25 +00:00
/-!
# Normal Ordering on Field operator algebra
-/
namespace FieldSpecification
2025-02-03 11:05:43 +00:00
open FieldOpFreeAlgebra
2025-01-27 06:20:25 +00:00
open HepLean.List
open FieldStatistic
namespace FieldOpAlgebra
variable {𝓕 : FieldSpecification}
/-!
## Normal order on super-commutators.
The main result of this is
`ι_normalOrderF_superCommuteF_eq_zero_mul`
2025-01-27 06:20:25 +00:00
which states that applying `ι` to the normal order of something containing a super-commutator
is zero.
-/
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnListF_eq_zero
2025-02-03 11:28:14 +00:00
(φa φa' : 𝓕.CrAnFieldOp) (φs φs' : List 𝓕.CrAnFieldOp) :
ι 𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛca * ofCrAnListF φs') = 0 := by
2025-01-27 06:20:25 +00:00
rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa) with hφa | hφa
<;> rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa') with hφa' | hφa'
· rw [normalOrderF_superCommuteF_ofCrAnListF_create_create_ofCrAnListF φa φa' hφa hφa' φs φs']
rw [map_smul, map_mul, map_mul, map_mul, ι_superCommuteF_of_create_create φa φa' hφa hφa']
2025-01-27 06:20:25 +00:00
simp
· rw [normalOrderF_superCommuteF_create_annihilate φa φa' hφa hφa' (ofCrAnListF φs)
(ofCrAnListF φs')]
2025-01-27 06:20:25 +00:00
simp
· rw [normalOrderF_superCommuteF_annihilate_create φa' φa hφa' hφa (ofCrAnListF φs)
(ofCrAnListF φs')]
2025-01-27 06:20:25 +00:00
simp
· rw [normalOrderF_superCommuteF_ofCrAnListF_annihilate_annihilate_ofCrAnListF
2025-01-30 11:08:10 +00:00
φa φa' hφa hφa' φs φs']
2025-01-27 06:20:25 +00:00
rw [map_smul, map_mul, map_mul, map_mul,
ι_superCommuteF_of_annihilate_annihilate φa φa' hφa hφa']
2025-01-27 06:20:25 +00:00
simp
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_eq_zero
2025-02-03 11:28:14 +00:00
(φa φa' : 𝓕.CrAnFieldOp) (φs : List 𝓕.CrAnFieldOp)
2025-02-03 11:42:56 +00:00
(a : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛca * a) = 0 := by
have hf : ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap (ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛca) = 0 := by
apply ofCrAnListFBasis.ext
2025-01-27 06:20:25 +00:00
intro l
2025-02-03 11:05:43 +00:00
simp only [FieldOpFreeAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
2025-01-27 06:20:25 +00:00
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
exact ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnListF_eq_zero φa φa' φs l
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap ((ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛca))) a = 0
2025-01-27 06:20:25 +00:00
rw [hf]
simp
2025-02-03 11:28:14 +00:00
lemma ι_normalOrderF_superCommuteF_ofCrAnOpF_eq_zero_mul (φa φa' : 𝓕.CrAnFieldOp)
2025-02-03 11:05:43 +00:00
(a b : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(a * [ofCrAnOpF φa, ofCrAnOpF φa']ₛca * b) = 0 := by
2025-01-27 06:20:25 +00:00
rw [mul_assoc]
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ mulLinearMap.flip
([ofCrAnOpF φa, ofCrAnOpF φa']ₛca * b)) a = 0
have hf : ι.toLinearMap ∘ₗ normalOrderF ∘ₗ mulLinearMap.flip
([ofCrAnOpF φa, ofCrAnOpF φa']ₛca * b) = 0 := by
apply ofCrAnListFBasis.ext
2025-01-27 06:20:25 +00:00
intro l
2025-02-03 11:05:43 +00:00
simp only [mulLinearMap, FieldOpFreeAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp,
2025-01-27 06:20:25 +00:00
Function.comp_apply, LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk,
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
rw [← mul_assoc]
exact ι_normalOrderF_superCommuteF_ofCrAnListF_eq_zero φa φa' _ _
2025-01-27 06:20:25 +00:00
rw [hf]
simp
2025-02-03 11:28:14 +00:00
lemma ι_normalOrderF_superCommuteF_ofCrAnOpF_ofCrAnListF_eq_zero_mul (φa : 𝓕.CrAnFieldOp)
(φs : List 𝓕.CrAnFieldOp)
2025-02-03 11:05:43 +00:00
(a b : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(a * [ofCrAnOpF φa, ofCrAnListF φs]ₛca * b) = 0 := by
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum]
2025-01-27 06:20:25 +00:00
rw [Finset.mul_sum, Finset.sum_mul]
rw [map_sum, map_sum]
apply Fintype.sum_eq_zero
intro n
rw [← mul_assoc, ← mul_assoc]
rw [mul_assoc _ _ b, ofCrAnListF_singleton]
rw [ι_normalOrderF_superCommuteF_ofCrAnOpF_eq_zero_mul]
2025-01-27 06:20:25 +00:00
2025-02-03 11:28:14 +00:00
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnOpF_eq_zero_mul (φa : 𝓕.CrAnFieldOp)
(φs : List 𝓕.CrAnFieldOp) (a b : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(a * [ofCrAnListF φs, ofCrAnOpF φa]ₛca * b) = 0 := by
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF_symm, ofCrAnListF_singleton]
2025-01-27 06:20:25 +00:00
simp only [FieldStatistic.instCommGroup.eq_1, FieldStatistic.ofList_singleton, mul_neg,
Algebra.mul_smul_comm, neg_mul, Algebra.smul_mul_assoc, map_neg, map_smul]
rw [ι_normalOrderF_superCommuteF_ofCrAnOpF_ofCrAnListF_eq_zero_mul]
2025-01-27 06:20:25 +00:00
simp
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnListF_eq_zero_mul
2025-02-03 11:28:14 +00:00
(φs φs' : List 𝓕.CrAnFieldOp) (a b : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(a * [ofCrAnListF φs, ofCrAnListF φs']ₛca * b) = 0 := by
rw [superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum, Finset.mul_sum, Finset.sum_mul]
2025-01-27 06:20:25 +00:00
rw [map_sum, map_sum]
apply Fintype.sum_eq_zero
intro n
rw [← mul_assoc, ← mul_assoc]
rw [mul_assoc _ _ b]
rw [ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnOpF_eq_zero_mul]
2025-01-27 06:20:25 +00:00
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_eq_zero_mul
2025-02-03 11:28:14 +00:00
(φs : List 𝓕.CrAnFieldOp)
2025-02-03 11:05:43 +00:00
(a b c : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(a * [ofCrAnListF φs, c]ₛca * b) = 0 := by
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF (ofCrAnListF φs)) c = 0
have hf : (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF (ofCrAnListF φs)) = 0 := by
apply ofCrAnListFBasis.ext
2025-01-27 06:20:25 +00:00
intro φs'
2025-02-03 11:42:56 +00:00
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
2025-01-27 06:20:25 +00:00
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
LinearMap.zero_apply]
rw [ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnListF_eq_zero_mul]
2025-01-27 06:20:25 +00:00
rw [hf]
simp
@[simp]
lemma ι_normalOrderF_superCommuteF_eq_zero_mul
2025-02-03 11:05:43 +00:00
(a b c d : 𝓕.FieldOpFreeAlgebra) : ι 𝓝ᶠ(a * [d, c]ₛca * b) = 0 := by
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF.flip c) d = 0
have hf : (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF.flip c) = 0 := by
apply ofCrAnListFBasis.ext
2025-01-27 06:20:25 +00:00
intro φs
2025-02-03 11:42:56 +00:00
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
2025-01-27 06:20:25 +00:00
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
LinearMap.zero_apply]
rw [ι_normalOrderF_superCommuteF_ofCrAnListF_eq_zero_mul]
2025-01-27 06:20:25 +00:00
rw [hf]
simp
@[simp]
2025-02-03 11:05:43 +00:00
lemma ι_normalOrder_superCommuteF_eq_zero_mul_right (b c d : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ([d, c]ₛca * b) = 0 := by
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul 1 b c d]
2025-01-27 06:20:25 +00:00
simp
@[simp]
2025-02-03 11:05:43 +00:00
lemma ι_normalOrderF_superCommuteF_eq_zero_mul_left (a c d : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(a * [d, c]ₛca) = 0 := by
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul a 1 c d]
2025-01-27 06:20:25 +00:00
simp
@[simp]
2025-02-03 11:05:43 +00:00
lemma ι_normalOrderF_superCommuteF_eq_zero_mul_mul_right (a b1 b2 c d: 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(a * [d, c]ₛca * b1 * b2) = 0 := by
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul a (b1 * b2) c d]
2025-01-27 06:20:25 +00:00
congr 2
noncomm_ring
@[simp]
2025-02-03 11:05:43 +00:00
lemma ι_normalOrderF_superCommuteF_eq_zero (c d : 𝓕.FieldOpFreeAlgebra) : ι 𝓝ᶠ([d, c]ₛca) = 0 := by
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul 1 1 c d]
2025-01-27 06:20:25 +00:00
simp
/-!
## Defining normal order for `FiedOpAlgebra`.
-/
2025-02-03 11:05:43 +00:00
lemma ι_normalOrderF_zero_of_mem_ideal (a : 𝓕.FieldOpFreeAlgebra)
(h : a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι 𝓝ᶠ(a) = 0 := by
2025-01-27 06:20:25 +00:00
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at h
2025-02-03 11:42:56 +00:00
let p {k : Set 𝓕.FieldOpFreeAlgebra} (a : FieldOpFreeAlgebra 𝓕)
(h : a ∈ AddSubgroup.closure k) := ι 𝓝ᶠ(a) = 0
2025-01-27 06:20:25 +00:00
change p a h
apply AddSubgroup.closure_induction
· intro x hx
obtain ⟨a, ha, b, hb, rfl⟩ := Set.mem_mul.mp hx
obtain ⟨a, ha, c, hc, rfl⟩ := ha
simp only [p]
simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq] at hc
match hc with
| Or.inl hc =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inl hc) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inr (Or.inl hc)) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inr (Or.inr hc)) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
· simp [p]
· intro x y hx hy
simp only [map_add, p]
intro h1 h2
simp [h1, h2]
· intro x hx
simp [p]
2025-02-03 11:05:43 +00:00
lemma ι_normalOrderF_eq_of_equiv (a b : 𝓕.FieldOpFreeAlgebra) (h : a ≈ b) :
ι 𝓝ᶠ(a) = ι 𝓝ᶠ(b) := by
2025-01-27 06:20:25 +00:00
rw [equiv_iff_sub_mem_ideal] at h
rw [LinearMap.sub_mem_ker_iff.mp]
simp only [LinearMap.mem_ker, ← map_sub]
exact ι_normalOrderF_zero_of_mem_ideal (a - b) h
2025-01-27 06:20:25 +00:00
/-- Normal ordering on `FieldOpAlgebra`. -/
noncomputable def normalOrder : FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift (ι.toLinearMap ∘ₗ normalOrderF) ι_normalOrderF_eq_of_equiv
2025-01-27 06:20:25 +00:00
map_add' x y := by
2025-01-29 15:33:40 +00:00
obtain ⟨x, rfl⟩ := ι_surjective x
obtain ⟨y, rfl⟩ := ι_surjective y
2025-01-27 06:20:25 +00:00
rw [← map_add, ι_apply, ι_apply, ι_apply]
rw [Quotient.lift_mk, Quotient.lift_mk, Quotient.lift_mk]
simp
map_smul' c y := by
2025-01-29 15:33:40 +00:00
obtain ⟨y, rfl⟩ := ι_surjective y
2025-01-27 06:20:25 +00:00
rw [← map_smul, ι_apply, ι_apply]
simp
2025-01-30 06:21:11 +00:00
@[inherit_doc normalOrder]
scoped[FieldSpecification.FieldOpAlgebra] notation "𝓝(" a ")" => normalOrder a
/-!
## Properties of normal ordering.
-/
2025-02-03 11:05:43 +00:00
lemma normalOrder_eq_ι_normalOrderF (a : 𝓕.FieldOpFreeAlgebra) :
2025-01-30 06:21:11 +00:00
𝓝(ι a) = ι 𝓝ᶠ(a) := rfl
2025-02-03 11:28:14 +00:00
lemma normalOrder_ofCrAnFieldOpList (φs : List 𝓕.CrAnFieldOp) :
2025-01-30 11:00:25 +00:00
𝓝(ofCrAnFieldOpList φs) = normalOrderSign φs • ofCrAnFieldOpList (normalOrderList φs) := by
rw [ofCrAnFieldOpList, normalOrder_eq_ι_normalOrderF, normalOrderF_ofCrAnListF]
2025-01-30 11:00:25 +00:00
rfl
2025-01-30 12:45:00 +00:00
@[simp]
lemma normalOrder_one_eq_one : normalOrder (𝓕 := 𝓕) 1 = 1 := by
have h1 : 1 = ofCrAnFieldOpList (𝓕 := 𝓕) [] := by simp [ofCrAnFieldOpList]
rw [h1]
rw [normalOrder_ofCrAnFieldOpList]
simp
2025-02-03 11:28:14 +00:00
lemma ofCrAnFieldOpList_eq_normalOrder (φs : List 𝓕.CrAnFieldOp) :
2025-01-30 11:00:25 +00:00
ofCrAnFieldOpList (normalOrderList φs) = normalOrderSign φs • 𝓝(ofCrAnFieldOpList φs) := by
rw [normalOrder_ofCrAnFieldOpList, smul_smul, normalOrderSign, Wick.koszulSign_mul_self,
one_smul]
2025-01-31 16:02:02 +00:00
lemma normalOrder_normalOrder_mid (a b c : 𝓕.FieldOpAlgebra) :
2025-02-03 05:39:48 +00:00
𝓝(a * b * c) = 𝓝(a * 𝓝(b) * c) := by
2025-01-31 16:02:02 +00:00
obtain ⟨a, rfl⟩ := ι_surjective a
obtain ⟨b, rfl⟩ := ι_surjective b
obtain ⟨c, rfl⟩ := ι_surjective c
rw [normalOrder_eq_ι_normalOrderF]
2025-02-03 05:39:48 +00:00
simp only [← map_mul]
2025-01-31 16:02:02 +00:00
rw [normalOrder_eq_ι_normalOrderF]
rw [normalOrderF_normalOrderF_mid]
rfl
lemma normalOrder_normalOrder_left (a b : 𝓕.FieldOpAlgebra) :
𝓝(a * b) = 𝓝(𝓝(a) * b) := by
obtain ⟨a, rfl⟩ := ι_surjective a
obtain ⟨b, rfl⟩ := ι_surjective b
rw [normalOrder_eq_ι_normalOrderF]
2025-02-03 05:39:48 +00:00
simp only [← map_mul]
2025-01-31 16:02:02 +00:00
rw [normalOrder_eq_ι_normalOrderF]
rw [normalOrderF_normalOrderF_left]
rfl
lemma normalOrder_normalOrder_right (a b : 𝓕.FieldOpAlgebra) :
𝓝(a * b) = 𝓝(a * 𝓝(b)) := by
obtain ⟨a, rfl⟩ := ι_surjective a
obtain ⟨b, rfl⟩ := ι_surjective b
rw [normalOrder_eq_ι_normalOrderF]
2025-02-03 05:39:48 +00:00
simp only [← map_mul]
2025-01-31 16:02:02 +00:00
rw [normalOrder_eq_ι_normalOrderF]
rw [normalOrderF_normalOrderF_right]
rfl
lemma normalOrder_normalOrder (a : 𝓕.FieldOpAlgebra) : 𝓝(𝓝(a)) = 𝓝(a) := by
trans 𝓝(𝓝(a) * 1)
· simp
· rw [← normalOrder_normalOrder_left]
simp
2025-01-30 11:00:25 +00:00
/-!
## mul anpart and crpart
-/
2025-02-03 11:28:14 +00:00
lemma normalOrder_mul_anPart (φ : 𝓕.FieldOp) (a : 𝓕.FieldOpAlgebra) :
2025-01-30 11:00:25 +00:00
𝓝(a * anPart φ) = 𝓝(a) * anPart φ := by
obtain ⟨a, rfl⟩ := ι_surjective a
rw [anPart, ← map_mul, normalOrder_eq_ι_normalOrderF, normalOrderF_mul_anPartF]
rfl
2025-02-03 11:28:14 +00:00
lemma crPart_mul_normalOrder (φ : 𝓕.FieldOp) (a : 𝓕.FieldOpAlgebra) :
2025-01-30 11:00:25 +00:00
𝓝(crPart φ * a) = crPart φ * 𝓝(a) := by
obtain ⟨a, rfl⟩ := ι_surjective a
rw [crPart, ← map_mul, normalOrder_eq_ι_normalOrderF, normalOrderF_crPartF_mul]
rfl
2025-01-30 06:21:11 +00:00
/-!
### Normal order and super commutes
-/
@[simp]
lemma normalOrder_superCommute_eq_zero (a b : 𝓕.FieldOpAlgebra) :
𝓝([a, b]ₛ) = 0 := by
obtain ⟨a, rfl⟩ := ι_surjective a
obtain ⟨b, rfl⟩ := ι_surjective b
rw [superCommute_eq_ι_superCommuteF, normalOrder_eq_ι_normalOrderF]
simp
@[simp]
lemma normalOrder_superCommute_left_eq_zero (a b c: 𝓕.FieldOpAlgebra) :
𝓝([a, b]ₛ * c) = 0 := by
obtain ⟨a, rfl⟩ := ι_surjective a
obtain ⟨b, rfl⟩ := ι_surjective b
obtain ⟨c, rfl⟩ := ι_surjective c
rw [superCommute_eq_ι_superCommuteF, ← map_mul, normalOrder_eq_ι_normalOrderF]
simp
@[simp]
lemma normalOrder_superCommute_right_eq_zero (a b c: 𝓕.FieldOpAlgebra) :
𝓝(c * [a, b]ₛ) = 0 := by
obtain ⟨a, rfl⟩ := ι_surjective a
obtain ⟨b, rfl⟩ := ι_surjective b
obtain ⟨c, rfl⟩ := ι_surjective c
rw [superCommute_eq_ι_superCommuteF, ← map_mul, normalOrder_eq_ι_normalOrderF]
simp
@[simp]
lemma normalOrder_superCommute_mid_eq_zero (a b c d : 𝓕.FieldOpAlgebra) :
𝓝(a * [c, d]ₛ * b) = 0 := by
obtain ⟨a, rfl⟩ := ι_surjective a
obtain ⟨b, rfl⟩ := ι_surjective b
obtain ⟨c, rfl⟩ := ι_surjective c
obtain ⟨d, rfl⟩ := ι_surjective d
rw [superCommute_eq_ι_superCommuteF, ← map_mul, ← map_mul, normalOrder_eq_ι_normalOrderF]
simp
2025-01-30 11:00:25 +00:00
/-!
### Swapping terms in a normal order.
-/
2025-02-03 11:28:14 +00:00
lemma normalOrder_ofFieldOp_ofFieldOp_swap (φ φ' : 𝓕.FieldOp) :
2025-01-30 11:00:25 +00:00
𝓝(ofFieldOp φ * ofFieldOp φ') = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • 𝓝(ofFieldOp φ' * ofFieldOp φ) := by
rw [ofFieldOp_mul_ofFieldOp_eq_superCommute]
simp
2025-02-03 11:28:14 +00:00
lemma normalOrder_ofCrAnFieldOp_ofCrAnFieldOpList (φ : 𝓕.CrAnFieldOp)
(φs : List 𝓕.CrAnFieldOp) : 𝓝(ofCrAnFieldOp φ * ofCrAnFieldOpList φs) =
2025-01-30 11:00:25 +00:00
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • 𝓝(ofCrAnFieldOpList φs * ofCrAnFieldOp φ) := by
rw [← ofCrAnFieldOpList_singleton, ofCrAnFieldOpList_mul_ofCrAnFieldOpList_eq_superCommute]
simp
2025-02-03 11:28:14 +00:00
lemma normalOrder_ofCrAnFieldOp_ofFieldOpList_swap (φ : 𝓕.CrAnFieldOp) (φ' : List 𝓕.FieldOp) :
2025-01-30 11:00:25 +00:00
𝓝(ofCrAnFieldOp φ * ofFieldOpList φ') = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
𝓝(ofFieldOpList φ' * ofCrAnFieldOp φ) := by
rw [← ofCrAnFieldOpList_singleton, ofCrAnFieldOpList_mul_ofFieldOpList_eq_superCommute]
simp
2025-02-03 11:28:14 +00:00
lemma normalOrder_anPart_ofFieldOpList_swap (φ : 𝓕.FieldOp) (φ' : List 𝓕.FieldOp) :
2025-01-30 11:00:25 +00:00
𝓝(anPart φ * ofFieldOpList φ') = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • 𝓝(ofFieldOpList φ' * anPart φ) := by
match φ with
| .inAsymp φ =>
simp
| .position φ =>
simp only [anPart_position, instCommGroup.eq_1]
rw [normalOrder_ofCrAnFieldOp_ofFieldOpList_swap]
rfl
| .outAsymp φ =>
simp only [anPart_posAsymp, instCommGroup.eq_1]
rw [normalOrder_ofCrAnFieldOp_ofFieldOpList_swap]
rfl
2025-02-03 11:28:14 +00:00
lemma normalOrder_ofFieldOpList_anPart_swap (φ : 𝓕.FieldOp) (φ' : List 𝓕.FieldOp) :
2025-01-30 11:00:25 +00:00
𝓝(ofFieldOpList φ' * anPart φ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • 𝓝(anPart φ * ofFieldOpList φ') := by
rw [normalOrder_anPart_ofFieldOpList_swap]
simp [smul_smul, FieldStatistic.exchangeSign_mul_self]
2025-02-03 11:28:14 +00:00
lemma normalOrder_ofFieldOpList_mul_anPart_swap (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
2025-01-30 11:00:25 +00:00
𝓝(ofFieldOpList φs) * anPart φ = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • 𝓝(anPart φ * ofFieldOpList φs) := by
rw [← normalOrder_mul_anPart]
rw [normalOrder_ofFieldOpList_anPart_swap]
2025-02-03 11:28:14 +00:00
lemma anPart_mul_normalOrder_ofFieldOpList_eq_superCommute (φ : 𝓕.FieldOp)
(φs' : List 𝓕.FieldOp) : anPart φ * 𝓝(ofFieldOpList φs') =
2025-01-30 11:08:10 +00:00
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝(ofFieldOpList φs' * anPart φ) +
[anPart φ, 𝓝(ofFieldOpList φs')]ₛ := by
2025-01-30 11:00:25 +00:00
rw [anPart, ofFieldOpList, normalOrder_eq_ι_normalOrderF, ← map_mul]
rw [anPartF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF]
2025-01-30 11:00:25 +00:00
simp only [instCommGroup.eq_1, map_add, map_smul]
rfl
/-!
## Super commutators with a normal ordered term as sums
-/
2025-02-03 11:28:14 +00:00
lemma ofCrAnFieldOp_superCommute_normalOrder_ofCrAnFieldOpList_sum (φ : 𝓕.CrAnFieldOp)
(φs : List 𝓕.CrAnFieldOp) : [ofCrAnFieldOp φ, 𝓝(ofCrAnFieldOpList φs)]ₛ = ∑ n : Fin φs.length,
2025-01-30 11:00:25 +00:00
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) • [ofCrAnFieldOp φ, ofCrAnFieldOp φs[n]]ₛ
* 𝓝(ofCrAnFieldOpList (φs.eraseIdx n)) := by
rw [normalOrder_ofCrAnFieldOpList, map_smul]
rw [superCommute_ofCrAnFieldOp_ofCrAnFieldOpList_eq_sum, Finset.smul_sum,
sum_normalOrderList_length]
congr
funext n
2025-01-30 11:08:10 +00:00
simp only [instCommGroup.eq_1, List.get_eq_getElem, normalOrderList_get_normalOrderEquiv,
normalOrderList_eraseIdx_normalOrderEquiv, Algebra.smul_mul_assoc, Fin.getElem_fin]
2025-01-30 11:00:25 +00:00
rw [ofCrAnFieldOpList_eq_normalOrder, mul_smul_comm, smul_smul, smul_smul]
by_cases hs : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[n])
· congr
erw [normalOrderSign_eraseIdx, ← hs]
trans (normalOrderSign φs * normalOrderSign φs) *
(𝓢(𝓕 |>ₛ (φs.get n), 𝓕 |>ₛ ((normalOrderList φs).take (normalOrderEquiv n))) *
𝓢(𝓕 |>ₛ (φs.get n), 𝓕 |>ₛ ((normalOrderList φs).take (normalOrderEquiv n))))
* 𝓢(𝓕 |>ₛ (φs.get n), 𝓕 |>ₛ (φs.take n))
· ring_nf
rw [hs]
rfl
· simp [hs]
· erw [superCommute_diff_statistic hs]
simp
2025-02-03 11:28:14 +00:00
lemma ofCrAnFieldOp_superCommute_normalOrder_ofFieldOpList_sum (φ : 𝓕.CrAnFieldOp)
(φs : List 𝓕.FieldOp) :
2025-01-30 11:08:10 +00:00
[ofCrAnFieldOp φ, 𝓝(ofFieldOpList φs)]ₛ = ∑ n : Fin φs.length, 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) •
[ofCrAnFieldOp φ, ofFieldOp φs[n]]ₛ * 𝓝(ofFieldOpList (φs.eraseIdx n)) := by
2025-01-30 11:00:25 +00:00
conv_lhs =>
rw [ofFieldOpList_eq_sum, map_sum, map_sum]
enter [2, s]
rw [ofCrAnFieldOp_superCommute_normalOrder_ofCrAnFieldOpList_sum, CrAnSection.sum_over_length]
enter [2, n]
rw [CrAnSection.take_statistics_eq_take_state_statistics, smul_mul_assoc]
rw [Finset.sum_comm]
refine Finset.sum_congr rfl (fun n _ => ?_)
simp only [instCommGroup.eq_1, Fin.coe_cast, Fin.getElem_fin,
CrAnSection.sum_eraseIdxEquiv n _ n.prop,
CrAnSection.eraseIdxEquiv_symm_getElem,
CrAnSection.eraseIdxEquiv_symm_eraseIdx, ← Finset.smul_sum, Algebra.smul_mul_assoc]
conv_lhs =>
enter [2, 2, n]
rw [← Finset.mul_sum]
2025-01-30 11:08:10 +00:00
rw [← Finset.sum_mul, ← map_sum, ← map_sum, ← ofFieldOp_eq_sum, ← ofFieldOpList_eq_sum]
2025-01-30 11:00:25 +00:00
/--
Within a proto-operator algebra we have that
`[anPartF φ, 𝓝(φs)] = ∑ i, sᵢ • [anPartF φ, φᵢ]ₛ * 𝓝(φ₀…φᵢ₋₁φᵢ₊₁…φₙ)`
where `sᵢ` is the exchange sign for `φ` and `φ₀…φᵢ₋₁`.
-/
2025-02-03 11:28:14 +00:00
lemma anPart_superCommute_normalOrder_ofFieldOpList_sum (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
2025-01-30 11:00:25 +00:00
[anPart φ, 𝓝(ofFieldOpList φs)]ₛ = ∑ n : Fin φs.length, 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) •
2025-02-03 11:13:23 +00:00
[anPart φ, ofFieldOpF φs[n]]ₛ * 𝓝(ofFieldOpList (φs.eraseIdx n)) := by
2025-01-30 11:00:25 +00:00
match φ with
| .inAsymp φ =>
simp
| .position φ =>
simp only [anPart_position, instCommGroup.eq_1, Fin.getElem_fin, Algebra.smul_mul_assoc]
rw [ofCrAnFieldOp_superCommute_normalOrder_ofFieldOpList_sum]
2025-02-03 11:28:14 +00:00
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod,
2025-01-30 11:00:25 +00:00
Fin.getElem_fin, Algebra.smul_mul_assoc]
rfl
| .outAsymp φ =>
simp only [anPart_posAsymp, instCommGroup.eq_1, Fin.getElem_fin, Algebra.smul_mul_assoc]
rw [ofCrAnFieldOp_superCommute_normalOrder_ofFieldOpList_sum]
2025-02-03 11:28:14 +00:00
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod,
2025-01-30 11:00:25 +00:00
Fin.getElem_fin, Algebra.smul_mul_assoc]
rfl
/-!
## Multiplying with normal ordered terms
-/
/--
Within a proto-operator algebra we have that
`anPartF φ * 𝓝(φ₀φ₁…φₙ) = 𝓝((anPart φ)φ₀φ₁…φₙ) + [anpart φ, 𝓝(φ₀φ₁…φₙ)]ₛ`.
-/
2025-02-03 11:28:14 +00:00
lemma anPart_mul_normalOrder_ofFieldOpList_eq_superCommute_reorder (φ : 𝓕.FieldOp)
(φs : List 𝓕.FieldOp) : anPart φ * 𝓝(ofFieldOpList φs) =
2025-01-30 11:00:25 +00:00
𝓝(anPart φ * ofFieldOpList φs) + [anPart φ, 𝓝(ofFieldOpList φs)]ₛ := by
rw [anPart_mul_normalOrder_ofFieldOpList_eq_superCommute]
2025-02-03 05:39:48 +00:00
simp only [instCommGroup.eq_1, add_left_inj]
2025-01-30 11:00:25 +00:00
rw [normalOrder_anPart_ofFieldOpList_swap]
/--
Within a proto-operator algebra we have that
`φ * 𝓝ᶠ(φ₀φ₁…φₙ) = 𝓝ᶠ(φφ₀φ₁…φₙ) + [anpart φ, 𝓝ᶠ(φ₀φ₁…φₙ)]ₛca`.
-/
2025-02-03 11:28:14 +00:00
lemma ofFieldOp_mul_normalOrder_ofFieldOpList_eq_superCommute (φ : 𝓕.FieldOp)
(φs : List 𝓕.FieldOp) : ofFieldOp φ * 𝓝(ofFieldOpList φs) =
2025-01-30 11:00:25 +00:00
𝓝(ofFieldOp φ * ofFieldOpList φs) + [anPart φ, 𝓝(ofFieldOpList φs)]ₛ := by
conv_lhs => rw [ofFieldOp_eq_crPart_add_anPart]
rw [add_mul, anPart_mul_normalOrder_ofFieldOpList_eq_superCommute_reorder, ← add_assoc,
← crPart_mul_normalOrder, ← map_add]
conv_lhs =>
lhs
rw [← add_mul, ← ofFieldOp_eq_crPart_add_anPart]
2025-02-03 11:13:23 +00:00
/-- In the expansion of `ofFieldOpF φ * normalOrderF (ofFieldOpListF φs)` the element
2025-01-30 11:00:25 +00:00
of `𝓞.A` associated with contracting `φ` with the (optional) `n`th element of `φs`. -/
2025-02-03 11:28:14 +00:00
noncomputable def contractStateAtIndex (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
2025-01-30 11:00:25 +00:00
(n : Option (Fin φs.length)) : 𝓕.FieldOpAlgebra :=
match n with
| none => 1
| some n => 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) • [anPart φ, ofFieldOp φs[n]]ₛ
/--
Within a proto-operator algebra,
`φ * N(φ₀φ₁…φₙ) = N(φφ₀φ₁…φₙ) + ∑ i, (sᵢ • [anPartF φ, φᵢ]ₛ) * N(φ₀φ₁…φᵢ₋₁φᵢ₊₁…φₙ)`,
where `sₙ` is the exchange sign for `φ` and `φ₀φ₁…φᵢ₋₁`.
-/
2025-02-03 11:28:14 +00:00
lemma ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum (φ : 𝓕.FieldOp)
(φs : List 𝓕.FieldOp) : ofFieldOp φ * 𝓝(ofFieldOpList φs) =
2025-01-30 11:00:25 +00:00
∑ n : Option (Fin φs.length), contractStateAtIndex φ φs n *
𝓝(ofFieldOpList (HepLean.List.optionEraseZ φs φ n)) := by
rw [ofFieldOp_mul_normalOrder_ofFieldOpList_eq_superCommute]
rw [anPart_superCommute_normalOrder_ofFieldOpList_sum]
simp only [instCommGroup.eq_1, Fin.getElem_fin, Algebra.smul_mul_assoc, contractStateAtIndex,
Fintype.sum_option, one_mul]
rfl
/-!
## Cons vs insertIdx for a normal ordered term.
-/
/--
Within a proto-operator algebra, `N(φφ₀φ₁…φₙ) = s • N(φ₀…φₖ₋₁φφₖ…φₙ)`, where
`s` is the exchange sign for `φ` and `φ₀…φₖ₋₁`.
-/
2025-02-03 11:28:14 +00:00
lemma ofFieldOpList_normalOrder_insert (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
2025-01-30 11:00:25 +00:00
(k : Fin φs.length.succ) : 𝓝(ofFieldOpList (φ :: φs)) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs.take k) • 𝓝(ofFieldOpList (φs.insertIdx k φ)) := by
have hl : φs.insertIdx k φ = φs.take k ++ [φ] ++ φs.drop k := by
rw [HepLean.List.insertIdx_eq_take_drop]
simp
rw [hl]
rw [ofFieldOpList_append, ofFieldOpList_append]
rw [ofFieldOpList_mul_ofFieldOpList_eq_superCommute, add_mul]
2025-02-03 05:39:48 +00:00
simp only [instCommGroup.eq_1, Nat.succ_eq_add_one, ofList_singleton, Algebra.smul_mul_assoc,
map_add, map_smul, normalOrder_superCommute_left_eq_zero, add_zero, smul_smul,
2025-01-30 11:00:25 +00:00
exchangeSign_mul_self_swap, one_smul]
rw [← ofFieldOpList_append, ← ofFieldOpList_append]
simp
/-!
## The normal ordering of a product of two states
-/
@[simp]
2025-02-03 11:28:14 +00:00
lemma normalOrder_crPart_mul_crPart (φ φ' : 𝓕.FieldOp) :
2025-01-30 11:00:25 +00:00
𝓝(crPart φ * crPart φ') = crPart φ * crPart φ' := by
rw [crPart, crPart, ← map_mul, normalOrder_eq_ι_normalOrderF, normalOrderF_crPartF_mul_crPartF]
@[simp]
2025-02-03 11:28:14 +00:00
lemma normalOrder_anPart_mul_anPart (φ φ' : 𝓕.FieldOp) :
2025-01-30 11:00:25 +00:00
𝓝(anPart φ * anPart φ') = anPart φ * anPart φ' := by
rw [anPart, anPart, ← map_mul, normalOrder_eq_ι_normalOrderF, normalOrderF_anPartF_mul_anPartF]
@[simp]
2025-02-03 11:28:14 +00:00
lemma normalOrder_crPart_mul_anPart (φ φ' : 𝓕.FieldOp) :
2025-01-30 11:00:25 +00:00
𝓝(crPart φ * anPart φ') = crPart φ * anPart φ' := by
rw [crPart, anPart, ← map_mul, normalOrder_eq_ι_normalOrderF, normalOrderF_crPartF_mul_anPartF]
@[simp]
2025-02-03 11:28:14 +00:00
lemma normalOrder_anPart_mul_crPart (φ φ' : 𝓕.FieldOp) :
2025-01-30 11:00:25 +00:00
𝓝(anPart φ * crPart φ') = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPart φ' * anPart φ := by
rw [anPart, crPart, ← map_mul, normalOrder_eq_ι_normalOrderF, normalOrderF_anPartF_mul_crPartF]
simp
2025-02-03 11:28:14 +00:00
lemma normalOrder_ofFieldOp_mul_ofFieldOp (φ φ' : 𝓕.FieldOp) : 𝓝(ofFieldOp φ * ofFieldOp φ') =
2025-01-30 11:00:25 +00:00
crPart φ * crPart φ' + 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • (crPart φ' * anPart φ) +
crPart φ * anPart φ' + anPart φ * anPart φ' := by
rw [ofFieldOp, ofFieldOp, ← map_mul, normalOrder_eq_ι_normalOrderF,
2025-02-03 11:13:23 +00:00
normalOrderF_ofFieldOpF_mul_ofFieldOpF]
2025-01-30 11:00:25 +00:00
rfl
2025-01-27 06:20:25 +00:00
end FieldOpAlgebra
end FieldSpecification