PhysLean/HepLean/PerturbationTheory/WickContraction/StaticContract.lean

115 lines
4.8 KiB
Text
Raw Normal View History

2025-01-30 12:45:00 +00:00
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
2025-02-03 10:47:18 +00:00
import HepLean.PerturbationTheory.WickContraction.Sign.Basic
2025-02-03 12:12:36 +00:00
import HepLean.PerturbationTheory.FieldOpAlgebra.TimeContraction
2025-01-30 12:45:00 +00:00
/-!
# Time contractions
-/
open FieldSpecification
variable {𝓕 : FieldSpecification}
namespace WickContraction
variable {n : } (c : WickContraction n)
open HepLean.List
open FieldOpAlgebra
/-- Given a Wick contraction `φsΛ` associated with a list `φs`, the
product of all time-contractions of pairs of contracted elements in `φs`,
as a member of the center of `𝓞.A`. -/
2025-02-03 11:28:14 +00:00
noncomputable def staticContract {φs : List 𝓕.FieldOp}
2025-01-30 12:45:00 +00:00
(φsΛ : WickContraction φs.length) :
Subalgebra.center 𝓕.FieldOpAlgebra :=
∏ (a : φsΛ.1), ⟨[anPart (φs.get (φsΛ.fstFieldOfContract a)),
ofFieldOp (φs.get (φsΛ.sndFieldOfContract a))]ₛ,
superCommute_anPart_ofFieldOp_mem_center _ _⟩
@[simp]
2025-02-03 11:28:14 +00:00
lemma staticContract_insertAndContract_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
2025-01-30 12:45:00 +00:00
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) :
(φsΛ ↩Λ φ i none).staticContract = φsΛ.staticContract := by
rw [staticContract, insertAndContract_none_prod_contractions]
congr
ext a
simp
/-- For `φsΛ` a Wick contraction for `φs = φ₀…φₙ`, the time contraction
`(φsΛ ↩Λ φ i (some j)).timeContract 𝓞` is equal to the multiple of
- the time contraction of `φ` with `φⱼ` if `i < i.succAbove j` else
`φⱼ` with `φ`.
- `φsΛ.timeContract 𝓞`.
This follows from the fact that `(φsΛ ↩Λ φ i (some j))` has one more contracted pair than `φsΛ`,
corresponding to `φ` contracted with `φⱼ`. The order depends on whether we insert `φ` before
or after `φⱼ`. -/
lemma staticContract_insertAndContract_some
2025-02-03 11:28:14 +00:00
(φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
2025-01-30 12:45:00 +00:00
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
(φsΛ ↩Λ φ i (some j)).staticContract =
(if i < i.succAbove j then
⟨[anPart φ, ofFieldOp φs[j.1]]ₛ, superCommute_anPart_ofFieldOp_mem_center _ _⟩
2025-02-03 05:39:48 +00:00
else ⟨[anPart φs[j.1], ofFieldOp φ]ₛ, superCommute_anPart_ofFieldOp_mem_center _ _⟩) *
2025-01-30 12:45:00 +00:00
φsΛ.staticContract := by
rw [staticContract, insertAndContract_some_prod_contractions]
congr 1
· simp only [Nat.succ_eq_add_one, insertAndContract_fstFieldOfContract_some_incl, finCongr_apply,
List.get_eq_getElem, insertAndContract_sndFieldOfContract_some_incl, Fin.getElem_fin]
split
· simp
· simp
· congr
ext a
simp
open FieldStatistic
lemma staticConract_insertAndContract_some_eq_mul_contractStateAtIndex_lt
2025-02-03 11:28:14 +00:00
(φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
2025-01-30 12:45:00 +00:00
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : φsΛ.uncontracted)
(hik : i < i.succAbove k) :
(φsΛ ↩Λ φ i (some k)).staticContract =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (φsΛ.uncontracted.filter (fun x => x < k))⟩)
2025-02-03 11:28:14 +00:00
• (contractStateAtIndex φ [φsΛ]ᵘᶜ ((uncontractedFieldOpEquiv φs φsΛ) (some k)) *
2025-01-30 12:45:00 +00:00
φsΛ.staticContract) := by
rw [staticContract_insertAndContract_some]
simp only [Nat.succ_eq_add_one, Fin.getElem_fin, ite_mul, instCommGroup.eq_1,
2025-02-03 11:28:14 +00:00
contractStateAtIndex, uncontractedFieldOpEquiv, Equiv.optionCongr_apply,
2025-01-30 12:45:00 +00:00
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply, Fin.coe_cast,
List.getElem_map, uncontractedList_getElem_uncontractedIndexEquiv_symm, List.get_eq_getElem,
Algebra.smul_mul_assoc, uncontractedListGet]
· simp only [hik, ↓reduceIte, MulMemClass.coe_mul]
trans (1 : ) • ((superCommute (anPart φ)) (ofFieldOp φs[k.1]) * ↑φsΛ.staticContract)
· simp
simp only [smul_smul]
congr 1
have h1 : ofList 𝓕.statesStatistic (List.take (↑(φsΛ.uncontractedIndexEquiv.symm k))
(List.map φs.get φsΛ.uncontractedList))
= (𝓕 |>ₛ ⟨φs.get, (Finset.filter (fun x => x < k) φsΛ.uncontracted)⟩) := by
simp only [ofFinset]
congr
rw [← List.map_take]
congr
rw [take_uncontractedIndexEquiv_symm]
rw [filter_uncontractedList]
rw [h1]
simp only [exchangeSign_mul_self]
2025-02-03 11:28:14 +00:00
lemma staticContract_of_not_gradingCompliant (φs : List 𝓕.FieldOp)
2025-01-30 12:45:00 +00:00
(φsΛ : WickContraction φs.length) (h : ¬ GradingCompliant φs φsΛ) :
φsΛ.staticContract = 0 := by
rw [staticContract]
simp only [GradingCompliant, Fin.getElem_fin, Subtype.forall, not_forall] at h
obtain ⟨a, ha⟩ := h
obtain ⟨ha, ha2⟩ := ha
apply Finset.prod_eq_zero (i := ⟨a, ha⟩)
simp only [Finset.univ_eq_attach, Finset.mem_attach]
apply Subtype.eq
simp only [List.get_eq_getElem, ZeroMemClass.coe_zero]
2025-02-03 11:13:23 +00:00
rw [superCommute_anPart_ofFieldOpF_diff_grade_zero]
2025-01-30 12:45:00 +00:00
simp [ha2]
end WickContraction